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ABSTRACT
Personalization is pervasive in the online space as it leads to higher
e�ciency for the user and higher revenue for the platform by in-
dividualizing the most relevant content for each user. However,
recent studies suggest that such personalization can learn and prop-
agate systemic biases and polarize opinions; this has led to calls
for regulatory mechanisms and algorithms that are constrained to
combat bias and the resulting echo-chamber e�ect. We propose a
versatile framework that allows for the possibility to reduce polar-
ization in personalized systems by allowing the user to constrain
the distribution from which content is selected. We then present a
scalable algorithm with provable guarantees that satis�es the given
constraints on the types of the content that can be displayed to a
user, but – subject to these constraints – will continue to learn and
personalize the content in order to maximize utility. We illustrate
this framework on a curated dataset of online news articles that
are conservative or liberal, show that it can control polarization,
and examine the trade-o� between decreasing polarization and the
resulting loss to revenue. We further exhibit the� exibility and scal-
ability of our approach by framing the problem in terms of the more
general diverse content selection problem and test it empirically
on both a News dataset and the MovieLens dataset.

CCS CONCEPTS
• Information systems→ Personalization; • Theory of compu-
tation → Online learning algorithms.
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1 INTRODUCTION
News and social media feeds, product recommendation, online ad-
vertising and other media that pervades the internet is increasingly
personalized. Content selection algorithms consider a user’s prop-
erties and past behavior in order to produce a personalized list of
content to display [21, 27]. This personalization leads to higher util-
ity and e�ciency both for the platform, and for the user, who sees
content more directly related to their interests [18, 19]. However, it
is now known that such personalization may result in propagating
or even creating biases that can in�uence decisions and opinions. In
an important study, [17] showed that user opinions about political
candidates, and hence elections, can be manipulated by changing
the personalized rankings of search results. Other studies show that
allowing for personalization of news and other sources of informa-
tion can result in a “�lter bubble” [29] which results in a type of
tunnel vision, e�ectively isolating people into their own cultural or
ideological bubbles; e.g., enabled by polarized information, many
people did not expect a Brexit vote or Trump election [10]. This
phenomenon has been observed on many social media platforms
(see, e.g., [13, 23, 39]), and studies have shown that over the past
eight years polarization has increased by 20% [20].

Polarization, and the need to combat it, was raised as a problem
in [32], where it was shown that Google search results di�er sig-
ni�cantly based on political preferences in the month following
the 2016 elections in the United States. In a di�erent setting, the
ease with which algorithmic bias can be introduced and the need
for solutions was highlighted in [35] where it was shown that it
is very easy to target people on platforms such as Facebook in a
discriminatory fashion. Several approaches to quantify bias and
polarization of online media have now been developed [31], and
interventions for� ghting polarization have been proposed [11].
One approach to counter such polarization would be to hide certain
user properties so that they cannot be used for personalization.
However, this could come at a loss to the utility for both the user
and the platform – the content displayed would be less relevant
and result in decreased attention from the user and less revenue
for the platform (see, e.g., [34]).

Can we design personalization algorithms that allow
us to avoid polarization yet still optimize individual
utility?
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1.1 Groups and Polarization
Often, content is classi�ed into di�erent groups which are de�ned
by one or more multi-valued sensitive attributes; for instance, news
stories can have a political leaning (e.g., conservative or liberal), and
a topic (e.g., politics, business or entertainment). More generally,
search engines and other platforms and applications maintain topic
models over their content (see e.g., [8]). At every time-step, the algo-
rithm must select a piece of content to display to a given user,1 and
feedback is obtained in the form of whether they click on, purchase
or hover over the item. The goal of the content selection algorithm
is to select content for each user in order to maximize the positive
feedback (and hence revenue) received; to do so, it must learn about
the topics or groups the user is most interested in. Thus, as this
optimal topic is a-priori unknown, the process is often modeled
as an online learning problem in which a user-speci�c probability
distribution (from which one selects content) is maintained and
updated according to feedback given [28]. As the content selection
algorithm learns more about a user, the corresponding probabil-
ity distribution begins to concentrate the mass on a small subset
of topics; this results in polarization where the feed is primarily
composed of a single type of content.

1.2 Our Contributions
To counter polarization, we introduce a simple framework which
allows us to place constraints on the probability distribution from
which content is sampled. The goal is to control polarization on
the content displayed at all time steps (see Section 2.2) and ensure
that the given recommendations do not specialize to a single group.
Our constraints are linear and limit the total expected weight that
can be allocated to a given group through lower and upper bound
parameters on each group. These polarization constraints are taken
as input and can be set according to the context or application.
Importantly, though simple, these constraints are versatile enough
to control polarization with respect to a variety of metrics which
can measure the extent of polarization, or lack thereof, in a given
algorithm. This is due to the fact that several fairness metrics de-
pend, e.g., on the ratio or di�erence between the probability mass
on two groups, hence can be implemented by picking appropriate
lower/upper bound parameters for the constraints in our setting
to give an immediate fairness guarantee (such reductions can be
formalized following standard techniques, see, e.g., [12]). Thus, by
placing such constraints the content shown to di�erent types of
users is varied, and polarization is controlled.

While there are several polynomial time algorithms for simi-
lar settings, the challenge is to come up with a scalable content
selection algorithm for the resulting optimization problem of max-
imizing revenue (via personalization) subject to satisfying the po-
larization constraints. We show how an adaptation of an existing
algorithm for the unconstrained bandit setting, along with the spe-
cial structure of our constraints, can lead to a scalable algorithm
with provable guarantees for this constrained optimization problem
(see Theorem 1). We evaluate this framework and our algorithm
on a curated dataset of online news articles that are conservative

1In order to create a complete feed, content can simply be selected repeatedly in this
manner to� ll the screen as the user scrolls down; for ease of exposition, we describe
the one-step process of selecting a single piece of content.

or liberal, show that it can control polarization, and examine the
trade-o� between decreasing polarization and the resulting loss to
revenue. We further illustrate the� exibility and scalability of this
approach by considering the problem of diverse content selection,
and evaluate our algorithm on the MovieLens dataset for diverse
movie recommendation as well as the YOW dataset for diverse
article recommendation. To the best of our knowledge, this is the
�rst algorithm to control polarization in personalized settings that
comes with provable guarantees, allows for the speci�cation of
general constraints, and is viable in practice.

2 FORMAL DEFINITIONS AND OUR MODEL
2.1 Polarization in Existing Models
Algorithms for the general (unconstrained, and hence potentially
biased) problem of displaying personalized content are often devel-
oped in the multi-armed bandit setting (see e.g., [25, 26]). Framed in
this manner, at each time step t = 1, . . . ,T , a user views a page (e.g.,
Facebook, Twitter or Google News), and one piece of content (or
arm) at 2 [k] must be selected to be displayed. A random reward
r
t
a , which depends on the selected content is then received by the
content selection algorithm. This reward captures resulting clicks,
purchases, or time spent viewing the given content.

More formally, at each time step t , a sample (r t1 , . . . , r
t
k ) is drawn

from an unknown distribution D, the player (the content selection
algorithm in this case) selects an arm a 2 [k] and receives reward
r
t
a 2 [0, 1]. As is standard in the literature, we assume that the ras
are drawn independently across a and t . The rewards ra0 for any
a
0 , a are assumed to be unknown – indeed, there is no way to

observe what a user’s actions would have been had a di�erent piece
of content been displayed. The algorithm computes a probability
distribution pt over the arms based on the previous observations
(a1, r1a ), . . . , (a

t�1, r t�1a ), and then selects arm a
t ⇠ pt . The goal is

to select pt s in order to maximize the cumulative rewards, and the
e�cacy of such an algorithm is measured with respect to how well
it minimizes regret – the di�erence between the algorithm’s reward
and the reward obtained from the (unknown) optimal policy. The
regret is de�ned as

RegretT := Ert⇠D
266664
TX

t=1
r
t
a? �

TX

t=1
r
t
a

377775 ,
where a? 2 [k] is the arm with the highest expected reward: a? :=
argmaxa2[k] Er⇠D[ra]. Note that D (and hence a

?) is a-priori
unknown. The regret is a random variable as at depends not only
on the draws from p

t , but also on the realized history of samples
{(at , r ta )}Tt=1.

The problem with this approach is that, bandit algorithms, by
optimizing for that “ideal” a?, by de�nition strive for polarization.
To understand how, letG1, . . . ,G� ✓ [k] be � groups of arms which
correspond to di�erent types of content across which we do not
want to polarize. In the simplest setting, the Gi s form a partition
(e.g., conservative and liberal news articles when the arms represent
news stories), but in general the group structure can be arbitrary. A
feature of bandit algorithms is that the probability distribution on
the arms, that the algorithm is learning, converges to the actionwith
the best expected reward; i.e., the entire probability mass ends up
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(a) (b)

Figure 1: Un�ltered vs. balanced content delivery engines. (a) polarization can occur on using personalized platforms, e.g.,
primarily showing ads for high-paying jobs (in red) to men and ads for low-paying jobs (in blue) to women (see [15]). (b) With
constraints on the extent to which the feeds can di�er, our model displays a more balanced feed.

on a single arm, and hence in a single group – causing polarization
(see e.g., [25]).

2.2 Our Model
We would like an approach that can control polarization with re-
spect to the groups that the selected arms belong to. Towards this,
for each group Gi , let `i be a lower bound and ui be an upper
bound on the amount of weighted probability mass that we allow
the content selection algorithm can place on this group. Formally,
we impose the following constraints:

`i 
X

a2Gi

wa (Gi ) · pta  ui 8i 2 [�],8t 2 [T ], (1)

where wa (Gi ) 2 [0, 1] represents the group weight of arm a on
group Gi .

The group weightwa (Gi ) denotes the similarity between arm a

and groupGi . For instance, following our earlier discussion on news
articles, a conservative leaning news article might have a group
weight of 0.9 for the conservative articles group and a group weight
of 0.1 for the liberal articles group, whereas a neutral article might
have both of these weights as 0.5. In case of categorical groups
(e.g., men vs. women), the group weight can take a binary value.
For more general cases (see, e.g., Section 5), this weight can take
a real value between 0 and 1. The values for wa (Gi )s can be set
using various methods depending on the application and can also
take into account error bounds for classi�ers that decide whether a
given a 2 Gi or not. For the case of text documents (e.g., news and
scienti�c articles [37]), the weights can be set using techniques like
topic modeling, which give us the percentage of a document that
corresponds to a certain topic.

The bounds `i s and ui s provide a handle with which we can
ensure that the weighted probability mass placed on any given
group is neither too high nor too low at each time step. Rather
than� xing the values of ui s and `i s, we allow them to be speci�ed

as input. This allows one to control the extent of polarization of
content depending on the application, and hence (indirectly) encode
bounds on a wide variety of existing metrics for di�erent notions
of group fairness which, in e�ect, encode the extent of polarization.
This requires translating the metric parameters into concrete values
of `i s and ui s. For instance, given � > 0, by setting ui s and `i s such
that ui � `i  � for all i , we can ensure that the risk di�erence is
bounded by � . An additional feature of our model is that no matter
what the group structures, or the lower and upper bounds are, the
constraints are always linear.

Importantly, note that unlike ignoring user preferences entirely
as in [29], the constraints still allow for personalization across
groups. For instance, if the groups are conservative-leaning vs
liberal-leaning articles, and the users are known conservatives or
liberals, we may require thatw (C) ·ptC  0.75 andw (L) ·ptL  0.75
for all t . This ensures that extreme polarization cannot occur –
at least 25% of the content a conservative is presented with will
be liberal-leaning. Despite these constraints, personalization at
the group level can still occur, e.g., by letting w (C) · ptC = 0.75
and w (L) · ptL = 0.25 for a conservative-leaning user. Further-
more, this framework allows for complete personalization within
a group; e.g., the conservative-leaning articles shown to conserva-
tives and liberals may di�er. This is crucial as the utility maximizing
conservative-leaning articles for a conservative may di�er from the
utility maximizing conservative-leaning articles for a liberal.

The next question we address is how to measure an algorithm’s
performance against the best constrained solution. We say that a
probability distribution p on [k] is constrained if it satis�es the
upper and lower bound constraints in (1), and let C be the set of all
such probability distributions. Note that given the linear nature of
the constraints, the set C is a polytope (an intersection of a set of
half spaces), and hence we can formulate the problem of�nding
�
? as a linear programming problem.
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Algorithm 1 C�������������G�����
Require: Constraint set C, a constrained probability distribution

qf 2
�
q : B1 (q,�) ⇢ C

 
, a positive integer T , a constant L that

controls the exploration
1: Initialize µ̄1 := 0
2: for t = 1, . . . ,T do
3: Update �t := min{1, 4/(�L2t )}
4: Compute pt := argmaxp2C µ̄>t p
5: Sample a from the probability distribution (1� �t )pt + �tqf
6: Observe reward rt = r ta
7: Update empirical mean µ̄t+1
8: end for

An algorithm is said to be constrained if it only selects pt 2 C.
The constrained regret for such an algorithm can be de�ned as

CRegretT := Ert⇠D, ãt⇠�?

266664
TX

t=1
r
t
ã �

TX

t=1
r
t
a

377775 ,
where �? 2 C represents a point in the constraint set C with the
highest expected reward: �? := argmaxp2C Er⇠D, ã⇠p [rã] .

R�����1. We note that there is nothing speci�c to political polar-
ization (e.g., news articles being grouped according to political leaning
with a goal of avoiding polarization) in the model. Instead, we can
think of content along with a topic model where the goal is to select
content that is diverse across all topics. While the prior notion is our
main motivator, the theorems apply to the more general case and
we show the� exibility of the approach by considering both political
polarization and diverse recommendation in the empirical evaluation
of our approach in Section 5.

The constraints on the probabilities in (1) can be translated to
the constraints on the number of times nTa that the arms in groups
Gi s are selected in T iterations of the algorithm,

`i 
X

a2Gi

wa (Gi ) ·
n
T
a
T
 ui 8i 2 [�], (2)

see the appendix for more details.

3 RELATEDWORK
Approaches to Curtail Polarization. There is a large body of
work studying the e�ects of polarization, and ways in which we
can combat it. A signi�cant portion of this literature considers inter-
ventions to inform or educate users on the e�ects of personalization
and is orthogonal to our work. Pariser, who coined the term “�lter
bubble”, proposes that we simply remove personalization entirely
[29]. However, this would come at a complete loss to the utility and
e�ciency that personalization can bring to both the user and the
platform. In contrast, our approach does allow for personalization –
up to a point. It ensures that the content is not polarized beyond the
given constraints, but within that personalizes in order to maintain
high utility. Another approach would be to manipulate the user
ratings (e.g., by adding noise or a regularizer to the recommender
algorithm) in order to have only approximate preferences; this has

been shown to help reduce polarization [4, 5, 38]. We compare
against such an approach in our empirical results (C�����������
R��), and observe that our algorithm signi�cantly outperforms this
method. The key di�erence is that such an approach adds noise
to attain de-polarization, while our approach de-polarizes in an
informed manner that personalizes content as much as possible
subject to the polarization constraints.
Algorithms forConstrainedBanditOptimization.Constrained
bandit optimization is a broad� eld that has arisen in the considera-
tion of a variety of problems unrelated to polarization. For example,
knapsack-like constraints on bandit optimization is studied in [6];
however, this work only considers constraints that are placed on the
�nal probability vector pT , whereas in our setting it is important to
satisfy fairness constraints at every time step {pt }Tt=1. A di�erent
line of work [24] considers online individual fairness constraints
which require that the probability of selecting all arms be approxi-
mately equal until enough information is gathered to con�dently
know which arm is the best. In a similar vein, another work [16]
considered budgets on the number of times that any given arm
can be selected. Both of these results can be loosely interpreted
as working with the special case of our model in which each arm
belongs to its own group; their results cannot be applied to our
more general setting or be used to curtail polarization.

4 ALGORITHMIC RESULTS
For each arm a 2 [k], let its mean reward be µ

?
a . In this case,

the unknown parameters are the expectations of each arm µ
?
a for

a 2 [k]. We assume that the reward for the t-th time step is sampled
from a Bernoulli distribution with probability of success µ?at . For a
probability distribution q 2 C and a small enough constant � > 0,
we de�ne B1 (q,�) to be the set of all probability distributions that
lie inside C, such that a probability distributionqf 2 B1 (q,�) has at
least � probability mass on each arm. More formally, B1 (q,�) 2 C
is an `1-ball of radius � centered at q. Let V (C) denote the set of
vertices of C and �? := argmax� 2V (C)

P
a2[k] µ?a�a .

T������1. Let � > 0 be a small enough constant. Given the de-
scription of C, any probability distribution qf 2

�
q : B1 (q,�) ⇢ C

 

that lies in the constrained region, and the sequence of rewards, the
C�������������G����� algorithm (Algorithm 1), run forT iterations,
has the following constrained regret bound:

E
⇥
CRegretT

⇤
= O

 
lnT
�� 2

!
,

where �t = min{1, 4/(�d2t )} and d = min
�
� , 1/2

 
. The algorithm

works for any lower bound L on � , with a L instead of � in the
regret bound. Here � is the di�erence between the maximum and
the second maximum expected rewards with respect to the µ?s over
the vertices of the polytope C. More formally, � :=

P
a2[k] µ?a�?a �

max� 2V (C)\�?
P
a2[k] µ?a�a .

Before we present the formal details, we� rst highlight some key
aspects of the algorithm, theorem and proofs.

For general convex sets, � can be 0 and the regret bound can at
best only be O

⇣p
T

⌘
[14]. As our constraints result in a constraint

set C which is a polytope, unless there are degeneracies, � is non-
zero. In general, � may be hard to estimate theoretically. However,

163



Controlling Polarization in Personalization: An Algorithmic Framework FAT* ’19, January 29–31, 2019, Atlanta, GA, USA

Algorithm Per iteration Running time Regret Bound

C����������B���2 [14] NP-Hard problem O

✓
k2

� log3T
◆

OFUL [3] NP-Hard problem Õ

⇣
1
�

⇣
k
2 + log2T

⌘⌘

C����������B���1 [14] O (k� ) + 2k LP-s O

✓
k3

� log3T
◆

C�������������G����� (Algorithm 1) O (1) + 1 LP O

✓
k
� 2 logT

◆

C�����������L1�OFUL (Algorithm 2) O (k� ) + 2k LP-s Õ

⇣
k
�

⇣
k
2 + log2T

⌘⌘

Table 1: The complexity and problem-dependent regret bounds for various algorithms when the decision set is a polytope.

for the settings in which we conduct our experiments, we observe
that the value of � is reasonably large.

When the probability space is unconstrained, it su�ces to solve
argmaxi 2[k] µ̄i , where µ̄i is an estimate for the mean reward of the
i-th arm. It can be an optimistic estimate for the armmean in case of
the UCB algorithm [9], a sample drawn from the normal distribution
with themean set as the empirical mean for the Thompson Sampling
algorithm [7]. When the probability distribution is constrained to
lie in a polytope C, instead of a maximum over the arm mean
estimates, we need to solve argmaxp2C µ̄>p. This necessitates the
use of a linear program for any algorithm operating in this fashion.
At every iteration, C�������������G����� solves one LP. We can
speed up the LP computation considerably in practice by using the
interior points method and warm starting the LP solver from the
optimal p found in the previous iteration (see Section 5.1.2).

4.1 Overview of Algorithm 1:
C�������������G�����.

The algorithm, with probability 1 � � chooses the probability dis-
tribution pt = argmaxp2C µ̄>p, and with probability � it samples
from a feasible constrained distribution qf 2 C in the �-interior,
i.e., there is at least � probability mass on each arm. The reward
for each time step t is generated as rt ⇠ Bernoulli

⇣
µ
?
at

⌘
, where

a
t ⇠ (1 � � )pt + �qf is the arm the algorithm chooses at the t th
time instant. The algorithm observes this reward and updates its
estimate to µ̄t+1 for the next time-step appropriately. C�����������
��G����� is a variant of the classical ��G����� approach [9]. Recall
that in our setting, an arm is an article (corner of the k-dimensional
simplex) and not a vertex of the polytope C. The polytope C sits
inside this simplex and may have exponentially many vertices. This
is not that case in the setting of [3, 14] – there may not be any
ambient simplex in which their polytope sits, and even if there is,
they do not use this additional information about which vertex of
the simplex was chosen at each time t . Thus, while they are forced
to maintain con�dence intervals of rewards for all the points in C,
this speciality in our model allows us to get away by maintaining
con�dence intervals only for the k arms (vertices of the simplex)
and then use these intervals to obtain a con�dence interval for any
point in C. Similar to ��G�����, if we choose each arm enough
number of times, we can build a good con�dence interval around
the mean of the reward for each arm. The di�erence is that instead
of converging to the optimal arm, our constraints maintain the
point inside C and it converges to a vertex of C. To ensure that we

choose each arm with high probability, we� x a constrained point
qf 2 �-interior of C and sample from the point (1 � � )pt + �qf .
Then, as in ��G�����, we proceed by bounding the regret showing
that if the con�dence-interval is tight enough, the optimal of LP
with true mean µ

? and LP with the empirical mean µ̄ does not
change.

4.2 Proof of Theorem 1
P����. Let �? =

f
�
?
1 , · · · ,�?k

g
2 C be the optimal probability

distribution. Conditioned on the history at time t , the expected
regret of C�������������G����� at iteration t can be bounded as
follows

R (t ) = µ
?>

�
? � *.

,
(1 � �t )µ?>�̄t + �t

kX

a=1
qa,f µ

?
a
+/
-

 (1 � �t ) µ?>
⇣
�
? � �̄t

⌘
+ �t µ

?>
�
?

 (1 � �t ) µ?>�?1
(
�̄
t , �?

)
+ �t µ

?>
�
?,

where �̄t = argmaxp2C µ̄>p.
Let n = 4/(�d2). For t  n, since �t = min{1, 4/(�L2t )} we have

�t = 1. The expected regret of the �-greedy is

E
⇥
CRegretT

⇤ 

µ
?>

�
?

TX

t=n+1
P

⇣
�̄
t , �?

⌘
+ µ?>�?

TX

t=1
�t . (3)

Let �µ = µ̄ � µ
?. Without loss of generality, let µ?>�i > µ

?>
�j

for any �i ,�j 2 V (C ) with i < j. Hence, �1 = �
?. Let �i =

µ
?> (�1 ��i ). As a result �1 = 0 and �2 = � . The event �̄t , �

?

happens when µ̄
>
t �i > µ̄

>
t �1 for some i > 1, that is,

⇣
µ
? + �µt

⌘>
(�i ��1) = ��i + �µ>t (�i ��1) � 0.
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Dataset # Arms (k) # Instances # Iterations (T ) # Groups (�)

PoliticalNews 1356 (avg.) 30 (# days) 10, 000 2
MovieLens 25 943 (# users) 1000 19

YOW 81 21 (# users) 10, 000 7
Table 2: Overview of datasets used in the empirical results in Section 5.1.3.

As a result, we have

P
⇣
�̄
t , �?

⌘
= P *.

,
[

�i 2V (C )\�1

�µ>t (�i ��1) � �i
+/
-

 P *.
,

[

�i 2V (C )\�1

���µt ��1 k�i ��1k1 � �i
+/
-

(4)

 P *.
,

[

�i 2V (C )\�1

���µt ��1 � �i
2
+/
-

= P
✓
k�µt k1 �

�

2

◆
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In (4) we use Holder’s inequality. Let Et = �
Pt
�=1 �t/2 and let Nt, j

be the number of times that we have chosen arm j up to time t .
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As qf 2
�
q : B1 (q,�) ⇢ C

 
, we have qa,f > �, i.e., the probability

of selecting an arm a is at least �tqa,f . Next, we bound each term
of (6). First, using Cherno�-Hoe�ding bound we have
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Using the Bernstein inequality [36], we have
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By plugging (7), (8) and (9) in (6) and noting that � < 1/2 we get
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Plugging (10) in (3) yields
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By substituting n = 4/(�d2 ) in the regret above and noting that
�  2d we conclude the proof
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4.3 Alternate Approaches and Special Cases
In this section, we brie�y outline an alternate approach for solving
this problem that results in a di�erent regret / runtime guarantee
(see Table 1). We further show that, for certain special cases of the
group structure, e.g., if the groups perfectly partition the arms, one
can design even faster solutions to the LP.

4.3.1 Algorithm 2: C�����������L1�OFUL. Any algorithm for solv-
ing the linear bandit problem with an in�nite, continuous set of
arms can be adapted to solve the constrained multi-armed ban-
dit problem. The constrained multi-armed bandit problem can be
thought of as a special case of this type of linear bandit problem,
where the continuous space of arms is simply the probability sim-
plex over our discrete arms. Thus, each arm increases the dimen-
sionality of the linear bandit problem by one, and the continuous
arm selected at time t corresponds to the probability distribution we
select at time t . The di�erence between these settings is that while
one gets rewards for points in the simplex in the case of linear bandit
problems, we get rewards for the arms themselves (i.e. the vertices
of the simplex) in the constrained multi-armed bandit problems. 2
Using these algorithms as a black-box can be ine�cient, and does
not allow us to come up with practical algorithms for real-world
applications.

However, in some cases, we can adapt algorithms for linear ban-
dits to our constrained setting in a way that makes the computations
e�cient. Consider the OFUL algorithm that appeared in [3]; we
will adapt this algorithm to our constrained setting, and we call
the adapted algorithm C�����������L1�OFUL. C�����������L1�
OFUL is an example of algorithms for linear bandits being used to
solve the constrained multi-armed bandit problem. The key di�er-
ence between C�����������L1�OFUL and OFUL is that instead of
using a scaled L2-ball in each iteration, we use a a scaled L1-ball,
which makes C�����������L1�OFUL e�cient; without this adapta-
tion the equivalent step in our setting required solving an NP-hard
and nonconvex optimization problem.3 C�����������L1�OFUL
2This is also what allows us to get fast and e�cient algorithms like C������������ �
G����� for the constrained multi-armed bandit setting.
3This is similar in spirit to how C����������B���2 can be adapted to C����������
B���1 in [14].
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incurs Õ
⇣
k
�

⇣
k
2 + log2T
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regret (see Theorem 3). This gives a

worse dependence on k but a better dependence on � as compared
with to C�������������G����� (see Table 1), and hence could
be bene�cial in some settings. However, the runtime is consider-
ably slower than C�������������G�����. Instead of maintaining a
least-squares estimate of the optimal reward vector, C�����������
��G����� maintains an empirical mean estimate of it denoted by
µ̄t , which is computationally cheaper per iteration. It also solves
only one linear program instead of 2k linear programs at every
iteration. Both of these factors together cause a signi�cant decrease
in running time compared to C�����������L1�OFUL. Thus, while
C�����������L1�OFUL theoretically achieves lower regret than
C�������������G����� in terms of � , it is not as computationally
e�cient, and performs worse in practice.

4.3.2 More E�icient LP Solvers for Special Group Structures. For
the special case where group weights are binary, i.e.,

wa (Gi ) 2 {0, 1} 8a 2 [k], i 2 [�],
and the constraint set have some special structure, we can solve
the LP e�ciently:

Single Partition. If the groups in the constraint set form a
partition, one can solve the linear program inO (k ) time via a simple
greedy algorithm. Since each part is separate, we can simply put
the minimum probability mass as required by the constraints on
the best arm of each group, and then put the maximum possible
probability mass on arms in descending order of arm utility. This
gives a probability vector that satis�es the constraints and is optimal
with respect to the reward.

Laminar Constraints. Let the groupsG1, . . . ,G� ✓ [k] be such
that: Gi \G j , ; implies Gi ✓ G j or G j ✓ Gi . The groups form a
tree-like data structure, where the children are the largest groups
that are subset of the parents. In this case, the LP can be solved
e�ciently by a greedy algorithm, and we can solve the LP step in
O (�k ) time exactly. For the sake of brevity and clarity, we defer the
full explanation to the appendix.

5 EMPIRICAL RESULTS
In this section we compare the performance of C�������������
G����� to the unconstrained algorithm, the hypothetical optimal
constrained algorithm (which we could implement if we knew the
rewards of the arms a-priori), a smoothed version of the uncon-
strained algorithm that satis�es the constraints, and a naive baseline
that satis�es the constraints but does not aim to optimize the re-
ward.4 We brie�y outline the experiments and results here, with
details in the following subsections.

We conduct counterfactual experiments on three datasets (see
Table 2). We consider a curated PoliticalNews where the constraints
aim to reduce the political polarization of the presented search re-
sults. As mentioned above, we can similarly apply these techniques
to the diversi�cation of content in areas beyond political polariza-
tion. Towards this, we simulate our algorithm on another dataset of
news articles [41] and strive to diversify across topics (e.g., business,

4In our simulations, the regret for C�����������L1�OFUL was similar or slightly
worse than C������������ �G�����. As C������������ �G����� is also much more
e�cient we use it as the main comparator, and leave open the question as to if or when
C�����������L1�OFUL performs better as suggested by the theoretical results.

entertainment, and world news), and the MovieLens dataset [22]
where we strive to diversify recommendations across genres. In
all cases, we� nd that C�������������G����� consistently out-
performs the smoothed version of the unconstrained algorithm
as well as the naive baseline, accumulating much higher reward,
while closely approximating the hypothetical optimal. This bene�t
of C�������������G����� is most evident when the constraints
are the tightest; e.g., C�������������G����� accumulates twice
as much reward as the smoothed version of the unconstrained
algorithm on the YOW dataset (see Figure 2).

We then compare the polarization and diversi�cation for the
constrained and unconstrained algorithms. We aim to reduce po-
larization by recommending news articles with both, liberal and
conservative biases. Similarly, we aim to increase diversity by rec-
ommending articles and movies not just from the best group in
terms of rewards, but from other groups as well. We observe that
algorithms in the unconstrained setting quickly converge to the best
group in terms of rewards, whereas algorithms in the constrained
setting always display a certain minimum percentage of content not
from the best group, hence improving diversi�cation and avoiding
polarization.

5.1 Experimental Setup
5.1.1 Algorithm and Benchmarks. In each counterfactual simula-
tion we report the normalized cumulative reward for each of the
following algorithms and benchmarks:
U�������������O������ is the hypothetical optimal algorithm
when there is no constraint and the expected rewards of all arms
a 2 [k] are known. It simply chooses the best arm a

? at each step t .
U���������������G����� is the unconstrained ��G����� algo-
rithm, where C is the set of all probability distributions over [k].
C�����������O������ is the hypothetical optimal probability
distribution, subject to the polarization constraints, that we could
have used if we had known the reward vector µ? for the arms
a-priori.
C�������������G����� is our implementation of Algorithm 1
with the given polarization constraints as input.5
C�����������R�� is a smoothed version of U���������������
G����� that satis�es the constraints. At each time step, given the
probability distribution pt speci�ed by the unconstrained ��G�����
algorithm, C�����������R�� takes the largest � 2 [0, 1] such that
selecting an arm with probability � · pt does not violate the con-
straints. With the remaining probability (1 � � ) it follows the same
procedure as in C�����������N���� to select an arm at random
subject to the constraints.
C�����������N����. As a baseline, we consider a simple algo-
rithm that satis�es the constraints as follows: for each group i and
arm a, with probability `i

wa (Gi )
it selects an arm at random fromGi ,

then, with any remaining probability, it selects an arm uniformly
at random from the entire collection [k] while respecting the upper
bound constraints ui .

Note that if we know the true rewards of the arms, this optimal
distribution is easy to compute via a simple greedy algorithm; it
simply places themost probabilitymass that satis�es the constraints

5We set �t = min(1, 10/t ). Tuning �t could give even better results.
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on the best arm, the most probability mass remaining on the second-
best arm subject to the constraints, and so on and so forth until the
entire probability mass is exhausted. This strategy can be found by
solving one LP.

5.1.2 Implementation Details. Instead of solving an LP from scratch
at each iteration (in step 4 of Algorithm 1), we warm start the LP
by using the solution of the LP from the previous iteration as the
starting point for our solver. We modi�ed an implementation of
an LP solver [40] which uses the interior points method. “Warm-
starting” the LP solver in this way speeds up the LP computation
considerably in practice and allows e�cient implementation of the
algorithm even when there are many groups that do not form a
partition and hence many nontrivial constraints. For certain special
cases, provably fast algorithms for solving the LP also exist (see
Section 4.3.2), however we did not employ these techniques in the
simulations.

Note that C�������������G�����, C�����������R�� andU���
������������G����� implementations all use Algorithm 1 as a sub-
routine; however C�������������G����� and C�����������R��
take the constraints as input, with C�����������R�� satisfying the
polarization constraints via smoothing the probability distribution,
and U���������������G����� need not satisfy the constraints at
all.

5.1.3 Description of Datasets and Group Weights.
PoliticalNews.We curate this dataset by using a large scale web-

crawler [2] to collect online news articles over a span of 30 days
(23rd July – 21st August, 2018), along with the number of Facebook
likes that each article received as of 22nd August, 2018. We look
at the political leaning of each article’s publisher as determined
by AllSides [1], which provides labels left, left-leaning, neutral,
right-leaning or right for a wide set of publishers. We discard any
articles that remain unlabelled or have fewer than 10 likes. This
results in a dataset consisting of an average of 1356 articles each
day, of which 15% are right, 7% are right-leaning, 31% are neutral,
34% are left-leaning and 13% are left. On average, the most-liked
right article has 42, 293 likes, the most-liked right-leaning article
has 144, 624 likes, the most-liked neutral article has 48, 647 likes, the
most-liked left-leaning article has 117, 267 likes and the most-liked
left article has 107, 497 likes. For each day, we encode each article
as an arm with Bernoulli reward with mean proportional to the
number of likes on Facebook (normalized to lie in the range [0, 1]).

We place a group weight of 0, 0.25, 0.5, 0.75 and 1 on right, right-
leaning, neutral, left-leaning and left articles respectively for the
liberal group (w (L)). Similarly, we place a group weight of 1, 0.75,
0.5, 0.25 and 0 on right, right-leaning, neutral, left-leaning and left
articles respectively for the conservative group (w (C)).

MovieLens. We consider the MovieLens dataset [22], which
consists of 100, 000 ratings from 943 users across 1, 682 movies;
each user rated at least 20 movies on a scale of 1 � 5. Each movie is
also a�liated with one or more of 19 genres (e.g., sci-�, romance,
thriller). As some genres have signi�cant overlap (e.g., thriller and
horror), while others have di�erent meanings at their intersections
(e.g., romance vs rom-com vs comedy), we� rst cluster the movies

into di�erent meta-categories based on their genres using a black-
box k-means clustering algorithm with k = 25 [30].6 We use the
cluster centres as representative arms, and associate all movies in
that cluster to that arm. For a given user, the reward associated with
an arm is given by a Gaussian where the mean is the average rating
the user gave to movies associated with the arm, and standard
deviation � = 0.1.

For a genre i (i 2 [19]) and movie category a, the group weight
wa (Gi ) is set to be the ith coordinate of the cluster centre of movie
category a found by the k-means clustering.

YOW.We consider the YOW dataset [41] which contains data
from a collection of 24 paid users who read 5921 unique articles
over a 4 week time period. The dataset contains the time at which
each user read an article, a [0-5] rating for each article read by each
user, and (optional) user-generated categories of articles viewed.
We use this data to construct reward distributions for each user on
a set of arms that one can expect to see from the real world.

We create a simple ontology to categorize the 10010 user-generated
labels into a total of � = 7 groups of content: Science, Entertain-
ment, Business, World, Politics, Sports, and USA. On average there
are k = 81 unique articles in a day. We take this to be the number of
arms in this experiment. Similar to the MovieLens experiments, we
cluster the articles into 81 arms based on the news categories they
belong to, using k-means clustering (k = 81). We use the cluster
centres as representative arms, and associate all articles in that
cluster to that arm. For a given user, the reward associated with
that arm is given by a Gaussian where the mean is the average rat-
ing the user gave to articles associated with the arm, and standard
deviation � = 0.1.

For a news category i (i 2 [7]) and article a, the group weight
wa (Gi ) is set to be the ith coordinate of the cluster centre found
by k�means clustering.

5.2 E�ect of Reducing Polarization on the
Reward

We vary the tightness of upper bound constraints on the probability
mass of displaying arms of a given group, and report the normalized
cumulative reward.

5.2.1 PoliticalNews. For this dataset, there are only two groups:
either left or right. However, a news article may have weight on
both groups, and it is these weights that determine how right- or
left-leaning an article is, and hence how much they contribute
towards polarization in a given direction. We simulated each of
the 30 days separately, resulting in n = 30 datapoints. We report
the normalized cumulative reward after T = 10, 000 iterations,
averaged over experiments from all 30 days. As there are only two
groups, setting a lower bound constraint `1 = � is equivalent to
setting an upper bound constraint u2 = 1 � � . Hence, it su�ces
to see the e�ect as we vary the upper bounds. We vary u1 = u2 =
u from 0.5 to 1; i.e., from a fully constrained one in which each
group has exactly 50% weighted probability of being selected to
a completely unconstrained setting. We observe in Figure 2a that,
even for very large values of u (i.e., when the constraints are loose),
the C�������������G����� algorithm signi�cantly outperforms

6We determine k = 25 using the graph of silhouette values [33] vs. k .

167



Controlling Polarization in Personalization: An Algorithmic Framework FAT* ’19, January 29–31, 2019, Atlanta, GA, USA

(a) PoliticalNews dataset. (b) MovieLens dataset. (c) YOW dataset.

Figure 2: E�ect of Polarization Constraints (u) on Reward. The normalized cumulative reward attained as a function of the
strength of the upper-bound constraints is reported for the three datasets in� gures (a), (b) and (c). In all cases, our algorithm
C�������������G����� does not allow polarization, and performs near-optimally with respect to the reward. The lower the
value of u, the stronger are the constraints.

(a) PoliticalNews. (b) MovieLens. (c) YOW.

Figure 3: Visualizing Polarization and Diversi�cation. The weighted probability mass on the best group is reported against
the number of iterations. While the unconstrained algorithm converges quickly to placing all of its probability mass on the
optimal group, the constrained algorithm – by de�nition – maintains some weight on the non-optimal groups. This is what
ensures diversi�cation across content and avoids polarization.

C�����������R�� with respect to regret, and is only worse than
the unconstrained (and hence polarized) algorithm by an additive
factor of approximately 1�u

5 (i.e., less than 10%).

5.2.2 MovieLens. For this dataset, a group corresponds to a genre.
Note that a movie can belong to multiple genres with varying
weights which may not add up to one. We report the normalized
cumulative reward averaged across all 943 users after T = 1000
iterations. Error bars depict the standard error of the mean. We
observe in Figure 2b that C�������������G����� signi�cantly
outperforms the C�����������N���� and C�����������R�� al-
gorithms across constraints. Additionally, as there are fewer arms
in the MovieLens dataset as compared to the PoliticalNews dataset,
the learning cost is lower and hence the C�������������G�����
performs essentially as well as the (unattainable) C�����������
O������ algorithm.

5.2.3 YOW. For this dataset, a group corresponds to an article
category. Note that an article can belong to multiple categories
(e.g., science and business) simultaneously, with varying weights
across each category. We report the normalized cumulative re-
ward averaged across all 21 users after T = 10, 000 iterations.
Error bars depict the standard error of the mean. As before, we

observe in Figure 2c that C�������������G����� signi�cantly
outperforms the C�����������N���� and C�����������R�� al-
gorithms across constraints, and performs almost as well as the
(unattainable) C�����������O������ algorithm.

5.3 Polarization Over Time
In order to see how polarization can be avoided and diversi�cation
can be enforced using our framework, for each dataset we plot
the normalized cumulative weighted probability mass on the best
group for each datapoint against the number of iterations, with the
u = 0.75. Initially, the unconstrained and constrained algorithms
have the same weighted probability mass for the best group, be-
cause the algorithms are simply exploring the arms. However, the
di�erence between the algorithms becomes very apparent once the
algorithm begin to learn. Due to a larger number of arms in the
PoliticalNews dataset, this process takes longer as compared to the
other two datasets. U���������������G����� quickly polarizes
almost-entirely to display content only from the best group. This
depicts the necessity for such constraints. However, C�����������
��G�����maintains at least 1�u of its weighted probability mass on
content not belonging to the best group, increasing diversi�cation
and avoiding polarization.
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6 CONCLUSION
In this paper we initiate a formal study of combating polarization in
personalization algorithms that learn user behavior. We present a
general framework that allows one to prevent polarization by ensur-
ing that a balanced set of items are displayed to each user. We show
how one can modify a simple bandit algorithm in order to perform
well with respect to regret subject to satisfying the polarization
constraints, improving the regret bound over the state-of-the-art.
Empirically, we observe that the C�������������G����� algorithm
performs well; it not only converges quickly to the theoretical opti-
mum, but this optimum, even for the tightest constraints on the arm
values selected (u = 0.2 for MovieLens, u = 0.5 for PoliticalNews),
is within a factor of 2 of the unconstrained rewards. Furthermore,
C�������������G����� is fast and we expect it to scale well in
web-level applications.

With regard to future work, a limitation of our algorithms is the
fact that they assume we are given the group labels and weights for
each piece of content. These labels would either need to be inferred
from the data, which could bring with it additional bias associated
with this learning algorithm, or would need to be self-reported,
which can lead to adversarial manipulation. Additionally, it would
be important to extend this work to a dynamic setting in which the
type of content changes over time, e.g., using restless bandit tech-
niques. From an experimental standpoint, testing this algorithm in
the� eld, in particular to measure user satisfaction given diversi�ed
news feeds, would be of signi�cant interest. Such an experiment
would give deeper insight into the bene�ts and tradeo�s between
personalization and the diversi�cation of content, which could then
be leveraged to determine which kind of constraints can prevent
polarization not just of the items in the feed, but of the beliefs and
opinions of those viewing them.
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