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It is not hard to notice the lack of attention paid to sci-
entific models in mid-twentieth century philosophy of
science. Models were, for instance, absent from philo-
sophical theories of scientific explanation; they were
also absent from attempts to understand how theoretical
concepts relate to experimental results. In the last few
decades, however, this has changed, and philosophers
of science are increasingly turning their attention to sci-
entific models. Models and their relation to other parts
of the scientific apparatus are now under philosophical
scrutiny; at the same time, they are instrumental parts
of approaches that aim to address certain philosophical
questions.

After recognizing the significance of models in
scientific inquiry and in particular the significance of
models in linking theoretical concepts to experimental
reports, philosophers have begun to explore a number
of questions about the nature and function of models.
There are several philosophically interesting questions
that could fit very well into the theme of this set of chap-
ters. For example, what is the function of models? and
what is the role of idealization and abstraction in mod-
eling?. It is, however, not the objective of this set of
chapters to address every detail about models that has
gained philosophical interest over time. In this part of
the book five model-related philosophical questions are
isolated from others and are explored in separate chap-
ters:

1. What is a scientific model?
2. How do models and theories relate?
3. How do models represent phenomena?
4. How do models function in scientific explanation?
5. How do models and other modes of scientific theo-

rizing, such as simulations, relate?

Of course, the authors of these chapters are all
aware that isolating these questions is only done in or-
der to reach an intelligible exposition of the explored
problems concerning models, and not because differ-
ent questions have been kept systematically apart in
the philosophical literature that preceded this work. In
fact, the very nature of some of these questions dic-
tates an interrelation with others and attempts to address
one leads to overlaps with attempts to address oth-
ers. For example, how one addresses the question what
sort of entities are models? or how one conceives the
theory–model relation affects the understanding of their
scientific representation and scientific explanation, and
vice versa. Although this point becomes evident in the
subsequent chapters, a conscious attempt was made by
each author to focus on the one question of concern of
their chapter and to attempt to extrapolate and expli-
cate the different proposed philosophical accounts that

have been offered in the quest to answer that particular
question. We hope that the final outcome is helpful and
illuminating to the reader.

Axel Gelfert in his contribution, Chap. 1: The Ontol-
ogy of Models, explicates the different ways in which
philosophers have addressed the issue of what a sci-
entific model is. For historical reasons, he begins by
examining the view that was foremost almost a cen-
tury ago, which held that models could be understood
as analogies. He then quickly turns his attention to
a debate that took place in the second half of the twen-
tieth century between advocates of logical positivism,
who held that models are interpretations of a formal
calculus, and advocates of the semantic view, which
maintained that models are directly defined mathemat-
ical structures. He continues by examining the more
recent view, which identifies models with fictional enti-
ties. He closes his chapter with an explication of what
he calls the more pragmatic accounts, which hold that
models can best be understood with the use of a mixed
ontology.

In Chap. 2:Models and Theories,Demetris Portides
explicates the two main conceptions of the structure of
scientific theories (and subsequently the two main con-
ceptions of the theory–model relation) in the history of
the philosophy of science, the received and the semantic
views. He takes the reader through the main arguments
that led to the collapse of the received view and gives
the reader a lens by which to distinguish the different
versions of the semantic view. He finally presents the
main arguments against the semantic view and in doing
so he explicates a more recent philosophical trend that
conceives the theory–model relation as too complex to
sufficiently capture with formal tools.

Roman Frigg and James Nguyen, in Chap. 3: Mod-
els and Representation begin by analyzing the concept
of representation and clarifying its main characteristics
and the conditions of adequacy any theory of represen-
tation should meet. They then proceed to explain the
main theories of representation that have been proposed
in the literature and explain with reference to their pro-
posed set of characteristics and conditions of adequacy
where each theory is found wanting. The similarity, the
structuralist, the inferential, the fictionalist, and the de-
notational accounts of representation are all thoroughly
explained and critically assessed. By doing this the au-
thors expose and explicate many of the weaknesses of
the different accounts of representation.

In Chap. 4: Models and Explanation, Alisa
Bokulich explains that by recognizing the extensive use
of models in science and by realizing that models are
more often than not highly idealized and incomplete
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descriptions of phenomena that frequently incorporate
fictional elements, philosophers have been led to revise
previous philosophical accounts of scientific explana-
tion. By scrutinizing different model-based accounts
of scientific explanation offered in the literature and
exposing the problems involved, she highlights the dif-
ficulties involved in resolving the issue of whether or
not the falsehoods present in models are operative in
scientific explanation.

Finally, Nancy Nersessian and Miles McLeod, in
Chap. 5: Models and Simulations, explicate a more re-
cent issue that is increasingly gaining the interest of
philosophers: how scientific models, i.e., the mathemat-
ical entities that scientists traditionally use to represent
phenomena, relate to simulations, particularly computa-
tional simulations. They give a flavor of the character-

istics of computational simulations both in the context
of well-developed overarching theories and in the con-
text where an overarching theory is absent. The authors
also highlight the epistemological significance of sim-
ulations for all such contexts by elaborating on how
simulations introduce novel problems that should con-
cern philosophers. Finally, they elaborate on the relation
between simulations and other constructs of human
cognition such as thought experiments.

In most cases, in all chapters the technical as-
pects of the philosophical arguments have been kept to
a minimum in order to make them accessible even to
readers working outside the sphere of the philosophy
of science. Suppressing the technical aspects has not,
however, introduced misrepresentation or distortion to
philosophical arguments.

lmagnani@unipv.it



The Ontology
5

Part
A
|1

1. The Ontology of Models

Axel Gelfert

The term scientific model picks out a great many
things, including scale models, physical mod-
els, sets of mathematical equations, theoretical
models, toy models, and so forth. This raises the
question of whether a general answer to the ques-
tionWhat is a model? is even possible. This chapter
surveys a number of philosophical approaches that
bear on the question of what, in general, a sci-
entific model is. While some approaches aim for
a unitary account that would apply to models in
general, regardless of their specific features, oth-
ers take as their basic starting point the manifest
heterogeneity of models in scientific practice. This
chapter first motivates the ontological question of
what models are by reflecting on the diversity of
different kinds of models and arguing that mod-
els are best understood as functional entities. It
then provides some historical background regard-
ing the use of analogy in science as a precursor
to contemporary notions of scientific model. This
is followed by a contrast between the syntactic
and the semantic views of theories and models
and their different stances toward the question
of what a model is. Scientists, too, typically oper-
ate with tacit assumptions about the ontological
status of models: this gives rise to what has been
called the folk ontology of models, according to
which models may be thought of as descriptions
of missing (i. e., uninstantiated) systems. There
is a close affinity between this view and recent
philosophical positions (to be discussed in the
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penultimate section) according to which models
are fictions. This chapter concludes by considering
various pragmatic conceptions of models, which
are typically associated with what may be called
mixed ontologies, that is, with the view that any
quest for a unitary account of the nature of models
is bound to be fruitless.

The philosophical discussion aboutmodels has emerged
from a cluster of concerns, which span a range of the-
oretical, formal, and practical questions across disci-
plines ranging from logic and mathematics to aesthetics
and artistic representations. In what follows, the term
models will normally be taken as synonymous to sci-
entific models, and any departure from this usage – for
example, when discussing the use of models in non-
scientific settings – will either be indicated explicitly
or will be clear from context. Focusing on scientific
models helps to clarify matters, but still leaves a wide

range of competing philosophical approaches for dis-
cussion. This chapter will summarize and critically dis-
cuss a number of such approaches, especially those that
shed light on the question what is a model?; these will
range from views that, by now, are of largely historical
interest to recent proposals at the cutting edge of the phi-
losophy of science. While the emphasis throughout will
be on the ontology of models, it will often be necessary
to also reflect on their function, use, and construction.
This is not meant to duplicate the discussion provided
in other chapters of this handbook; rather, it is the natu-
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6 Part A Theoretical Issues in Models

ral result of scientific models having traditionally been
defined either in terms of their function (e.g., to provide
representations of target systems) or via their relation
to other (purportedly) better understood entities, such as
scientific theories.

The rest of this chapter is organized as follows:
Sect. 1.1 will set the scene by introducing a num-
ber of examples of scientific models, thereby raising
the question of what degree of unity any philosophi-
cal account of scientific models can reasonably aspire
to. Section 1.2 will characterize models as functional
entities and will provide a general taxonomy for how
to classify various possible philosophical approaches.
A first important class of specific accounts, going back
to nineteenth-century scientists and philosophers, will
be discussed in Sect. 1.3, which focuses on models as
analogies. Section 1.4 is devoted to formal approaches

that dominatedmuch of twentieth-century discussion of
scientific models. In particular, it will survey the syntac-
tic view of theories and models and its main competitor,
the semantic view, along with recent formal approaches
(such as the partial structures approach) which aim to
address the shortcomings of their predecessors. Sec-
tion 1.5 provides a sketch of what has been called the
folk ontology of models – that is, a commonly shared
set of assumptions that inform the views of scientific
practitioners. On this view, models are place-holders for
imaginary concrete systems and as such are not unlike
fictions. The implications of fictionalism about models
are discussed in Sect. 1.6. Finally, in Sect. 1.7, recent
pragmatic accounts are discussed, which give rise to
what may be called a mixed ontology, according to
which models are best conceived of as a heterogeneous
mixture of elements.

1.1 Kinds of Models: Examples from Scientific Practice

Models can be found across a wide range of scientific
contexts and disciplines. Examples include the Bohr
model of the atom (still used today in the context of
science education), the billiard ball model of gases, the
DNA double helix model, scale models in engineering,
the Lotka–Volterra model of predator–prey dynamics in
population biology, agent-based models in economics,
the Mississippi River Basin model (which is a 200 acres
hydraulic model of the waterways in the entire Mis-
sissippi River Basin), and general circulation models
(GCMs), which allow scientists to run simulations of
Earth’s climate system. The list could be continued in-
definitely, with the number of models across the natural
and social sciences growing day by day.

In philosophical discussions of scientific models,
the situation is hardly any different. The Stanford Ency-
clopedia of Philosophy gives the following list of model
types that have been discussed by philosophers of sci-
ence [1.1]:

“Probing models, phenomenological models, com-
putational models, developmental models, explana-
tory models, impoverished models, testing models,
idealized models, theoretical models, scale models,
heuristic models, caricature models, didactic mod-
els, fantasy models, toy models, imaginary mod-
els, mathematical models, substitute models, iconic
models, formal models, analogue models and in-
strumental models.”

The proliferation of models and model types, in the
sciences as well as in the philosophical literature, led
Goodman to lament in his 1968 Languages of Art [1.2,
p. 171]: “Few terms are used in popular and scientific

discourse more promiscuously than model.” If this was
true of science and popular discourse in the late 1960s,
it is all the more true of the twenty-first century philos-
ophy of science.

As an example of a physics-based model, consider
the Ising model, proposed in 1925 by the German physi-
cist Ernst Ising as a model of ferromagnetism in certain
metals. The model starts from the idea that a macro-
scopic magnet can be thought of as a collection of
elementary magnets, whose orientation determines the
overall magnetization. If all the elementary magnets are
aligned along the same axis, then the systemwill be per-
fectly ordered and will display a maximum value of the
magnetization. In the simplest one-dimensional (1-D)
case, such a state can be visualized as a chain of ele-
mentary magnets, all pointing the same way

� � � """"""""""""" � � �

The alignment of elementary magnets can be brought
about either by a sufficiently strong external magnetic
field or it can occur spontaneously, as will happen
below a critical temperature, when certain substances
(such as iron and nickel) undergo a ferromagnetic phase
transition.Whether or not a systemwill undergo a phase
transition, according to thermodynamics, depends on its
energy function, which in turn is determined by the in-
teractions between the component parts of the system.
For example, if neighboring elementary magnets inter-
act in such a way as to favor alignment, there is a good
chance that a spontaneous phase transition may occur
below a certain temperature. The energy function, then,
is crucial to the model and, in the case of the Ising
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model, is defined as

ED�
X

i;j

JijSiSj ;

with the variable Si representing the orientation (C1
or �1) of an elementary magnet at site i in the crys-
tal lattice and Jij representing the strength of interaction
between two such elementary magnets at different lat-
tice sites i and j.

Contrast this with model organisms in biology,
the most famous example of which is the fruit fly
Drosophila melanogaster. Model organisms are real or-
ganisms – actual plants and animals that are alive and
can reproduce – yet they are used as representations ei-
ther of another organism (e.g., when rats are used in
place of humans in medical research) or of a biologi-
cal phenomenon that is more universal (e.g., when fruit
flies are used to study the effects of crossover between
homologous chromosomes).Model organisms are often
bred for specific purposes and are subject to artificial se-
lection pressures, so as to purify and standardize certain
features (e.g., genetic defects or variants) that would
not normally occur, or would occur only occasionally,
in populations in the wild. As Ankeny and Leonelli put
it, in their ideal form “model organisms are thought to
be a relatively simplified form of the class of organism
of interest” [1.3, p. 318]; yet it often takes consider-
able effort to work out the actual relationships between
the model organism and its target system (whether it be
a certain biological phenomenon or a specific class of
target organisms). Tractability and various experimen-
tal desiderata – for example, a short life cycle (to allow
for quick breeding) and a relatively small and compact
genome (to allow for the quick identification of vari-
ants) – take precedence over theoretical questions in the
choice of model organisms; unlike for the Ising model,
there is no simple mathematical formula that one can
rely on to study how one’s model behaves, only the
messy world of real, living systems.

The Ising model of ferromagnetism and model or-
ganisms such as Drosophila melanogaster may be at
opposite ends of the spectrum of scientific models.
Yet the diversity among those models that occupy the
middle ground between theoretical description and ex-
perimental system is no less bewildering. How, one
might wonder, can a philosophical account of scien-
tific models aspire to any degree of unity or generality
in the light of such variety? One obvious strategy is to
begin by drawing distinctions between different overar-
ching types of models. Thus, Black [1.4] distinguishes
between four such types:

1. Scale models

2. Analog models
3. Mathematical models
4. Theoretical models.

The basic idea of scale and analog models is
straightforward: a scale model increases or decreases
certain (e.g., spatial) features of the target system, so
as to render them more manageable in the model;
an analog model also involves the change of medium
(as in once popular hydraulic models of the econ-
omy, where the flow of money was represented by
the flow of liquids through a system of pumps and
valves). Mathematical models are constructed by first
identifying a number of relevant variables and then de-
veloping empirical hypotheses concerning the relations
that may hold between the variables; through (often
drastic) simplification, a set of mathematical equations
is derived, which may then be evaluated analytically or
numerically and tested against novel observations. The-
oretical models, finally, begin usually by extrapolating
imaginatively from a set of observed facts and regu-
larities, positing new entities and mechanisms, which
may be integrated into a possible theoretical account of
a phenomenon; comparison with empirical data usually
comes only at a later stage, once the model has been
formulated in a coherent way.

Achinstein [1.5] includes mathematical models in
his definition of theoretical model, and proposes an
analysis in terms of sets of assumptions about a model’s
target system. This allows him to include Bohr’s model
of the atom, the DNA double-helix model (considered
as a set of structural hypotheses rather than as a phys-
ical ball-and-stick model), the Ising model, and the
Lotka–Volterra model among the class of theoretical
systems. Typically, when a scientist constructs a theo-
retical model, she will help herself to certain established
principles of a more fundamental theory to which she
is committed. These will then be adapted or modified,
notably by introducing various new assumptions spe-
cific to the case at hand. Typically, an inner structure or
mechanism is posited which is thought to explain the
features of the target system. At the same time, there
is the (often explicit) acknowledgment that the target
system is far more complex than the model is able to
capture: in this sense, a theoretical model is believed
by the practitioner to be false as a description of the tar-
get system. However, this acknowledgment of the limits
of applicability of models also allows researchers to si-
multaneously use different models of the same target
system alongside each other. Thus understood, theoret-
ical models usually involve the combination of general
theoretical principles and specific auxiliary assump-
tions, which may only be valid for a narrow range of
parameters.
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1.2 The Nature and Function of Models

The great variety of models employed in scientific prac-
tice, as illustrated by the long list given in the preceding
section, suggests two things. First, it makes vivid just
how central the use of models is to the scientific en-
terprise and to the self-image of scientists. As von
Neumann put it, with some hyperbole [1.6, p. 492]:
“The sciences do not try to explain, they hardly even try
to interpret, they mainly make models.”Whatever shape
and form the scientific enterprise might take without the
use of models, it seems safe to say that it would not look
anything like science as we presently know it. Second,
one might wonder whether it is at all reasonable to look
for a unitary philosophical account of models. Given
the range of things we call models, and the diversity of
uses to which they are being put, it may simply not be
possible to give a one-size-fits-all answer to the ques-
tion what is a model? This has led some commentators
to propose quietism as the only viable attitude toward
ontological questions concerning models and theories.
As French puts it [1.7, p. 245],

“whereas positing the reality of quarks or genes may
contribute to the explanation of certain features of
the physical world, adopting a similar approach to-
ward theories and models – that is, reifying them as
entities for which a single unificatory account can
be given – does nothing to explain the features of
scientific practice.”

While there are good grounds for thinking that
quietism should only be a position of last resort in
philosophy, the sentiment expressed by French may
go some way toward explaining why there has been
a relative dearth of philosophical work concerning the
ontology of models. The neglect of ontological ques-
tions concerning models has been remarked upon by
a number of contributors, many of whom, like Con-
tessa, find it [1.8, p. 194]

“surprising if one considers the amount of interest
raised by analogous questions about the ontology
and epistemology of mathematical objects in the
philosophy of mathematics.”

A partial explanation of this discrepancy lies in
the arguably greater heterogeneity in what the term
scientific models is commonly thought to refer to,
namely, anything from physical ball-and-stick models
of chemical molecules to mathematical models formu-
lated in terms of differential equations. (If we routinely
included dividers, compasses, set squares, and other
technical drawing tools among, say, the class of geo-
metrical entities, the ontology of mathematical entities,
too, would quickly become rather unwieldy!)

In the absence of any widely accepted unified ac-
count of models – let alone one that would provide
a conclusive answer to ontological questions arising
from models – it may be natural to assume, as indeed
many contributors to the debate have done, that “if all
scientific models have something in common, this is not
their nature but their function” [1.8, p. 194]. One option
would be to follow the quietist strategy concerning the
ontology of models and “refuse to engage with this is-
sue and ask, instead, how can we best represent these
features [and functions of models] in order that we can
understand” [1.7, p. 245] the practice of scientific mod-
eling. Alternatively, however, one might simply accept
that the function of models in scientific inquiry is our
best – and perhaps only – guide when exploring an-
swers to the question what is a model?. At the very
least, it is not obvious that an exploration of the on-
tological aspects of models is necessarily fruitless or
misguided. Ducheyne puts this nicely when he argues
that [1.9, p. 120],

“if we accept that models are functional entities, it
should come as no surprise that when we deal with
scientific models ontologically, we cannot remain
silent on how such models function as carriers of
scientific knowledge.”

As a working assumption, then, let us treat scientific
models as functional entities and explore how much on-
tological unity – over and above their mere functional
role – we can give to the notion of scientific model.

Two broad classes of functional characterizations
of models can be distinguished, according to which it
is either instantiation or representation that lie at the
heart of how models function. As Giere [1.10] sees it,
on the instantial view, models instantiate the axioms
of a theory, where the latter is understood as being
comprised of linguistic statements, including mathe-
matical statements and equations. (For an elaboration
of how such an account might turn out, see Sect. 1.4.)
By contrast, on the representational view, “language
connects not directly with the world, but rather with
a model, whose characteristics may be precisely de-
fined”; the model then connects with the world “by
way of similarity between a model and the designated
parts of the world” [1.10, p. 156]. Other proponents
of the representational view have de-emphasized the
role of similarity, while still endorsing representation as
one of the key functions of scientific models. Generally
speaking, proponents of the representational view con-
sider models to be “tools for representing the world,”
whereas those who favor the instantial view regard them
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primarily as “providing a means for interpreting formal
systems” [1.10, p. 44].

Within the class of representational views, one
can further distinguish between views that empha-
size the informational aspects of models and those
that take their pragmatic aspects to be more central.
Chakravartty nicely characterizes the informational va-
riety of the representational view as follows [1.11,
p. 198]:

“The idea here is that a scientific representation is
something that bears an objective relation to the
thing it represents, on the basis of which it contains
information regarding that aspect of the world.”

The term objective here simply means that the req-
uisite relation obtains independently of the model user’s
beliefs or intentions as well as independently of the spe-
cific representational conventions he or she might be
employing. Giere’s similarity-based view of represen-
tation – according to which scientific models represent
in virtue of their being similar to their target systems
in certain specifiable ways – would be an example of
such an informational view similarity, as construed by
Giere, is a relation that holds between the model and
its target, irrespective of a model user’s beliefs or in-
tentions, and regardless of the cognitive uses to which
he or she might put the model. Other philosophical po-
sitions that are closely aligned with the informational
approach might posit that, for a model to represent
its target, the two must stand in a relation of isomor-
phism, partial isomorphism, or homomorphism to one
another.

By contrast, the pragmatic variety of the represen-
tational view of models posits that models function as
representations of their targets in virtue of the cogni-
tive uses to which human reasoners put them. The basic
idea is that a scientific model facilitates certain cogni-
tive activities – such as the drawing of inferences about
a target system, the derivation of predictions, or per-
haps a deepening of the scientific understanding – on
the part of its user and, therefore, necessarily involves
the latter’s cognitive interests, beliefs, or intentions.
Hughes [1.12], for example, emphasizes the interplay
of three cognitive–theoretical processes – denotation,
demonstration, and interpretation – which jointly give
rise to the representational capacity of (theoretical)
models in science. On Hughes’ (aptly named) DDI
account of model-based representation, denotation ac-
counts for the fact that theoretical elements of a model

purport to refer to elements in the physical world. The
possibility of demonstration from within a model –
in particular, the successful mathematical derivation of
results for models that lend themselves to mathemati-
cal derivation techniques – attests both to the models
having a nontrivial internal dynamic and to its be-
ing a viable object of fruitful theoretical investigation.
Through successful interpretation, a model user then
relates the theoretically derived results back to the phys-
ical world, including the model’s target system. Clearly,
the DDI account depends crucially on there being some-
one who engages in the activities of interpreting and
demonstrating – that is, it depends on the cognitive ac-
tivities of human agents, who will inevitably draw on
their background knowledge, cognitive interests, and
derivational skills in establishing the requisite relations
for bringing about representation.

The contrast between informational and pragmatic
approaches to model-based representation roughly
maps onto another contrast, between what Knuuttila
has dubbed dyadic and triadic approaches. The former
takes “the model–target dyad as a basic unit of analysis
concerning models and their epistemic values” [1.13,
p. 142]. This coheres well with the informational ap-
proach which, as discussed, tends to regard models as
(often abstract) structures that stand in a relation of iso-
morphism, or partial isomorphism, to a target system.
By contrast, triadic accounts – in line with pragmatic
views of model-based representation – based represen-
tation shift attention away from models and the abstract
relations they stand in, toward modeling as a theoretical
activity pursued by human agents with cognitive inter-
ests, intentions, and beliefs. On this account, model-
based representation cannot simply be a matter of any
abstract relationship between the model and a target
system since one cannot, as Suárez puts it, “reduce
the essentially intentional judgments of representation
users to facts about the source and target object or sys-
tems and their properties” [1.14, p. 768]. Therefore,
so the suggestion goes, the model–target dyad needs
to be replaced by a three-place relation between the
model, its target, and the model user. Suárez, for exam-
ple, proposes an inferentialist account of model-based
representation, according to which a successful model
must allow “competent and informed agents to draw
specific inferences regarding” [1.14, p. 773] the target
system – thereby making the representational success
of a model dependent on the qualities of a (putative)
model user.
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1.3 Models as Analogies and Metaphors

Some scholars trace the emergence of the concept of
a scientific model to the second half of the nineteenth
century [1.15]. Applying our contemporary concept of
model to past episodes in the history of science, we
can of course identify prior instances of models be-
ing employed in science; however, until the nineteenth
century scientists were engaged in little systematic
self-reflection on the uses and limitations of models.
Philosophy of science took even longer to pay attention
to models in science, focusing instead on the role and
significance of scientific theories. Only from the middle
of the twentieth century onward did philosophical inter-
est in models acquire the requisite momentum to carry
the debate forward. Yet in both science and philosophy,
the term model underwent important transformations,
so it will be important to identify some of these shifts,
in order to avoid unnecessary ambiguity and confusion
in our exploration of the questionWhat is a model?.

Take, for example, Duhem’s dismissal, in 1914, of
what he takes to be the excessive use of models in
Maxwell’s theory of electromagnetism, as presented in
an English textbook published at the end of the nine-
teenth century [1.16, p. 7]:

“Here is a book intended to expound the modern
theories of electricity and to expound a new theory.
In it there are nothing but strings which move round
pulleys which roll around drums, which go through
pearl beads, which carry weights; and tubes which
pumpwater while others swell and contract; toothed
wheels which are geared to one another and engage
hooks. We thought we were entering the tranquil
and neatly ordered abode of reason, but we find our-
selves in a factory.”

What Duhem is mocking in this passage, which
is taken from a chapter titled Abstract Theories and
Mechanical Models, is a style of reasoning that is dom-
inated by the desire to visualize physical processes in
purely mechanical terms. His hostility is thus directed
at mechanical models only – as the implied contrast in
the chapter title makes clear – and does not extend to the
more liberal understanding of the term scientific model
in philosophy of science today.

Indeed, when it comes to the use of analogy in
science, Duhem is much more forgiving. The term anal-
ogy, which derives from the Greek expression for pro-
portion, itself has multiple uses, depending on whether
one considers its use as a rhetorical device or as a tool
for scientific understanding. Its general form is that of
“pointing to a resemblance between relations in two dif-
ferent domains, that is, A is related to B like C is related
to D” [1.17, p. 110]. An analogy may be considered

merely formal, when only the relations (but not the re-
lata) resemble another, or it may be material, when the
relata from the two domains (i. e., A and B on one side,
C and D on the other) have certain attributes or charac-
teristics in common.Duhem’s understanding of analogy
is more specific, in that he conceives of analogy as be-
ing a relation between two sets of statements, such as
between one theory and another [1.16, p. 97]:

“Analogies consist in bringing together two abstract
systems; either one of them already known serves to
help us guess the form of the other not yet known, or
both being formulated, they clarify the other. There
is nothing here that can astonish the most rigorous
logician, but there is nothing either that recalls the
procedures dear to ample but shallow minds.”

Consider the following example: When Christiaan
Huygens (1629–1695) proposed his theory of light, he
did so on the basis of analogy with the theory of sound
waves: the relations between the various attributes and
characteristics of light are similar to those described by
acoustic theory for the rather different domain of sound.
Thus understood, analogy becomes a legitimate instru-
ment for learning about one domain on the basis of
what we know about another. In modern parlance, we
might want to say that sound waves provided Huygens
with a good theoretical model – at least given what was
known at the time – for the behavior of light.

There is, however, a risk of ambiguity in that last
sentence – an ambiguity which, asMellor [1.18, p. 283]
has argued, it would be wrong to consider harmless.
Saying that sound waves provide a good model for the
theory of light appears to equate the model with the
sound waves – as though one physical object (sound
waves) could be identified with the model. At first sight,
this might seem unproblematic, given that, as far as
wave-like behavior is concerned, we do take light and
sound to be relevantly analogous. However, while it is
indeed the case that “some of the constructs called anal-
ogy in the nineteenth century would today be routinely
referred to as models” [1.19, p. 46], it is important to
distinguish between, on the one hand, analogy as the
similarity relation that exists between a theory and an-
other set of statements and, on the other hand, the latter
set of statements as the analog of the theory. Further-
more, we need to distinguish between the analog (e.g.,
the theory of sound waves, in Huygens’s case) and the
set of entities of which the analog is true (e.g., the sound
waves themselves). (On this point, see [1.18, p. 283].)
What Duhem resents about the naïve use of what he
refers to as mechanical models is the hasty conflation
of the visualized entities – (imaginary) pulleys, drums,
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pearl beads, and toothed wheels – with what is in fact
scientifically valuable, namely the relation of analogy
that exists between, say, the theory of light and the the-
ory of sound.

This interpretation resolves an often mentioned ten-
sion – partly perpetuated by Duhem himself, through
his identification of different styles of reasoning (the
English style of physics with its emphasis on mechan-
ical models, and the Continental style which prizes
mathematical principles above all) – between Duhem’s
account of models and that of the English physicist
Norman Campbell. Thus, Hesse, in her seminal essay
Models and Analogies in Science [1.20], imagines a di-
alogue between a Campbellian and a Duhemist. At the
start of the dialogue, the Campbellian attributes to the
Duhemist the following view: “I imagine that along
with most contemporary philosophers of science, you
would wish to say that the use of models or analogs is
not essential to scientific theorizing and that [. . . ] the
theory as a whole does not require to be interpreted by
means of any model.” To this, the Duhemist, who ad-
mits that “models may be useful guides in suggesting
theories,” replies: “When we have found an acceptable
theory, any model that may have led us to it can be
thrown away. Kekulé is said to have arrived at the struc-
ture of the benzene ring after dreaming of a snake with
its tail in its mouth, but no account of the snake appears
in the textbooks of organic chemistry.” The Campbel-
lian’s rejoinder is as follows: “I, on the other hand, want
to argue that models in some sense are essential to the
logic of scientific theories” [1.20, pp. 8–9]. The quoted
part of Hesse’s dialogue has often been interpreted as
suggesting that the bone of contention between Duhem
and Campbell is the status of models in general (in the
modern sense that includes theoretical models), with
Campbell arguing in favor and Duhem arguing against.
But we have already seen that Duhem, using the lan-
guage of analogy, does allow for theoretical models to
play an important role in science. This apparent tension
can be resolved by being more precise about the target
of Duhem’s criticism: “Kekulé’s snake dream might il-
lustrate the use of a visualizable model, but it certainly
does not illustrate the use of an analogy, in Duhem
and Campbell’s sense” [1.18, p. 285]. In other words,
Duhem is not opposed to scientific models in general,
but to its mechanical variety in particular. And, on the
point of over-reliance on mechanical models, Camp-
bell, too, recognizes that dogmatic attachment to such
a style of reasoning is open to criticism. Such a dog-
matic view would hold “that theories are completely
satisfactory only if the analogy on which they are based
is mechanical, that is to say, if the analogy is with the
laws of mechanics” [1.21, p. 154]. Campbell is clearly
more sympathetic than Duhem toward our “craving for

mechanical theories,” which he takes to be firmly rooted
in our psychology. But he insists that [1.21, p. 156]

“we should notice that the considerations which
have been offered justify only the attempt to adopt
some form of theory involving ideas closely related
to those of force and motion; it does not justify the
attempt to force all such theories into the Newtonian
mold.”

To be sure, significant differences between Duhem
and Campbell remain, notably concerning what kinds
of uses of analogies in science (or, in today’s termi-
nology, of scientific – including theoretical – models)
are appropriate. For Duhem, such uses are limited to
a heuristic role in the discovery of scientific theories. By
contrast, Campbell claims that “in order that a theory
may be valuable [. . . ] it must display analogy” [1.21,
p. 129] – though it should be emphasized again, not
necessarily analogy of the mechanical sort. (As Mel-
lor argues, Duhem and Campbell differ chiefly in their
views of scientific theories and less so in their take
on analogy, with Duhem adopting a more static per-
spective regarding theories and Campbell taking a more
realist perspective [1.18].)

It should be said, though, that Hesse’s Campbellian
and Duhemist are at least partly intended as carica-
tures and serve as a foil for Hesse’s own account of
models as analogies. The account hinges on a three-
part distinction between positive, negative, and neutral
analogies [1.20]. Using the billiard ball model of gases
as her primary example, Hesse notes that some char-
acteristics are shared between the billiard balls and the
gas atoms (or, rather, are ascribed by the billiard ball
model to the gas atoms); these include velocity, mo-
mentum, and collision. Together, these constitute the
positive analogy. Those properties we know to belong
to billiard balls, but not to gas atoms – such as color –
constitute the negative analogy of the model. However,
there will typically be properties of the model (i. e., the
billiard ball system) of which we do not (yet) know
whether they also apply to its target (in this case, the gas
atoms). These form the neutral analogy of the model.
Far from being unimportant, the neutral analogy is cru-
cial to the fruitful use of models in scientific inquiry,
since it holds out the promise of acquiring new knowl-
edge about the target system by studying the model in
its place [1.20, p. 10]:

“If gases are really like collections of billiard balls,
except in regard to the known negative analogy, then
from our knowledge of the mechanics of billiard
balls, wemay be able to make new predictions about
the expected behavior of gases.”
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In dealing with scientific models we may choose to
disregard the negative analogy (which results in what
Hesse calls model1) and consider only the known posi-
tive and neutral analogies – that is, only those properties
that are shared, or for all we know may turn out to be
shared, between the target system and its analog. (On
the terminology discussed in Sect. 1.1, due to Black
and Achinstein, model1 would qualify as a theoretical
model.) This, Hesse argues, typically describes our use
of models for the purpose of explanation: we resolve
to treat model1 as taking the place of the phenom-
ena themselves. Alternatively, we may actively include
the negative analogy in our considerations, resulting in
what Hesse calls model2 or a form of analog model.
Given that, let us assume, the model system (e.g., the
billiard balls) was chosen because it was observable –
or, at any rate, more accessible than the target sys-
tem (e.g., the gas) – model2 allows us to study the
similarities and dissimilarities between the two analo-
gous domains; model2, qua being a model for its target,
thus has a deeper structure than the system of bil-
liard balls considered in isolation – and, like model1,
importantly includes the neutral analogy, which holds
out the promise of novel insights and predictions. As
Hesse puts it, in the voice of her Campbellian interlocu-
tor [1.20, pp. 12–13]:

“My whole argument is going to depend on these
features [of the neutral analogy] and so I want
to make it clear that I am not dealing with static
and formalized theories, corresponding only to the
known positive analogy, but with theories in the pro-
cess of growth.”

Models have been discussed not only in terms of
analogy, but also in terms of metaphor.Metaphor, more
explicitly than analogy, refers to the linguistic realm:

a metaphor is a linguistic expression that involves at
least one part that is being transferred from a domain
of discourse where it is common to another – the tar-
get domain – where it is uncommon. The existence of
an analogy may facilitate such a transfer of linguis-
tic expression; at the same time, it is entirely possible
that “it is the metaphor that prompts the recognition
of analogy” [1.17, p. 114] – both are compatible with
one another and neither is obviously prior to the other.
Metaphorical language is widespread in science, not
just in connection with models: for example, physicists
routinely speak of black holes and quantum tunneling
as important predictions of general relativity theory and
quantum theory, respectively. Yet, as Soskice and Harré
note, there is a special affinity between models and
metaphor [1.22, p. 302]:

“The relationship of model and metaphor is this: if
we use the image of a fluid to explicate the supposed
action of the electrical energy, we say that the fluid
is functioning as a model for our conception of the
nature of electricity. If, however, we then go on to
speak of the rate of flow of an electrical current, we
are using metaphorical language based on the fluid
model.”

In spite of this affinity, it would not be fruitful to
simply equate the two – let alone jump to the conclu-
sion that, in the notion of metaphor, we have found
an answer to the question What is a model?. Mod-
els and metaphors both issue in descriptions, and as
such they may draw on analogies we have identified
between two otherwise distinct domains; more, how-
ever, needs to be said about the nature of the relations
that need to be in place for something to be con-
sidered a (successful) model of its target system or
phenomenon.

1.4 Models Versus the Received View: Sentences and Structures

Much of the philosophical debate about models is in-
debted to model theory as a branch of (first-order)
mathematical logic. Two philosophical frameworks for
thinking about scientific models and theories – the
syntactic view of models and theories and its main com-
petitor, the semantic view – can be traced back to these
origins; they are the topic of this section. (For a more
extensive discussion, see also other chapters in this
handbook.) The syntactic view (Sect. 1.4.2) is closely
aligned with logical positivism, which dominated much
anglophone philosophy of science until the mid-1960s,
and is sometimes referred to as the received view. Given

that less rigid approaches and an overarching movement
toward pluralism have reshaped the philosophy of sci-
ence over the past half-century or so, this expression is
somewhat dated; to make matters worse, other contrib-
utors to the debate have, over time, come to apply the
same label to the syntactic view’s main competitor, the
semantic view of models and theories. Instead of adju-
dicating which position deserves this dubious honor, the
present section will discuss how each view conceives of
models. Before doing so, however, a few preliminaries
are in order concerning the competing views’ joint ori-
gins in logical model theory.
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1.4.1 Models and the Study
of Formal Languages

Model theory originated as the study of formal lan-
guages and their interpretations, starting from a Tarski-
style truth theory based only on notions from syntax
and set theory. On a broader understanding, the re-
striction to formal languages may be dropped, so as
to include scientific languages (which are often closer
to natural language than to logic), or even natural lan-
guages. However, the distinction between the syntax
and the semantics of a language, which is sharpest in
logic, also provides a useful framework for studying
scientific languages and has guided the development
of both the syntactic and the semantic views of theo-
ries and models. The syntax of a language L is made
up of the vocabulary of L, along with the rules that
determine which sequence of symbols counts as a well-
formed expression in L; in turn, the semantics of L
provides interpretations of the symbolic expressions in
L, by mapping them onto another relational structure R,
such that all well-formed expressions in L are rendered
intelligible (e.g., via rules of composition) and can be
assessed in terms of their truth or falsity in R.

The contrast between the syntax and the semantics
of a language allows for two different approaches to the
notion of a theory. A theory T may either be defined
syntactically, as the set of all those sentences that can
be derived, through a proper application of the syntac-
tic rules, from a set of axioms (i. e., statements that are
taken to be fundamental); or it may be defined semanti-
cally, as all those (first-order) sentences that a particular
structure,M, satisfies. An example of the former would
be Euclidean geometry, which consists of five axioms
and all the theorems derivable from them using geo-
metrical rules; an example of the latter would be group
theory, which simply consists of all those first-order
sentences that a set of groups – definable in terms of set-
theoretic entities – satisfies. (This example, and much
of the short summary in this section, is owed to [1.23];
for further discussion, see references therein.) The syn-
tactic and semantic definitions of what a theory is are
closely related: starting from the semantic definition, to
see whether a particular structure M is a model of an
axiomatizable first-order theory T , all that one needs to
show is that M satisfies the axioms.

1.4.2 The Syntactic View of Theories

The syntactic view of theories originated from the com-
bination of the insights – or, to put it a little more
cautiously, fundamental tenets – of two research pro-
grams: the philosophical program, aligned with Pierre
Duhem (Sect. 1.3) and Henri Poincaré, of treating

(physical) theories as systems of hypotheses designed
to save the phenomena, and the mathematical program,
pioneered by David Hilbert, which sought to formalize
(mathematical) theories as axiomatic systems. By com-
bining the two, it seemed possible to identify a theory
with the set of logical consequences that could be de-
rived from its fundamental principles (which were to
be treated as axioms), using only the rules of the lan-
guage in which the theory was formulated. In spite of
its emphasis on syntax, the syntactic view is not en-
tirely divorced from questions of semantics. When it
comes to scientific theories, we are almost always deal-
ing with interpreted sets of sentences, some of which –
the fundamental principles or axioms – are more ba-
sic than others, with the rest derivable using syntactic
rules. The question then arises at which level interpreta-
tion of the various elements of a theory is to take place.
This is where the slogan to save the phenomena points
us in the right direction: on the syntactic view, inter-
pretation only properly enters at the level of matching
singular theoretical predictions, formulated in strictly
observational terms, with the observable phenomena.
Higher level interpretations – for example, pertain-
ing to purely theoretical terms of a theory (such as
posited unobservable entities, causal mechanisms, laws,
etc.) – would be addressed through correspondence
rules, which offered at least a partial interpretation, so
that some of the meaning of such higher level terms
of a theory could be linked up with observational sen-
tences.

As an example, consider the example of classical
mechanics. Similar to how Euclidean geometry can
be fully derived from a set of five axioms, classical
mechanics is fully determined by Newton’s laws of
mechanics. At a purely formal level, it is possible to
provide a fully syntactic axiomatization in terms of the
relevant symbols, variables, and rules for their manipu-
lation – that is, in terms of what Rudolf Carnap calls the
calculus of mechanics. If one takes the latter as one’s
starting point, it requires interpretation of the results
derived from within this formal framework, in order
for the calculus to be recognizable as a theory of me-
chanics, that is, of physical phenomena. In the case
of mechanics, we may have no difficulty stating the
axioms in the form of the (physically interpreted) New-
tonian laws of mechanics, but in other cases – perhaps
in quantum mechanics – making this connection with
observables may not be so straightforward. As Carnap
notes [1.24, p. 57]:

“[t]he relation of this theory [D the physically in-
terpreted theory of mechanics] to the calculus of
mechanics is entirely analogous to the relation of
physical to mathematical geometry. ”

lmagnani@unipv.it



Part
A
|1.4

14 Part A Theoretical Issues in Models

As in the Euclidean case, the syntactic view iden-
tifies the theory with a formal language or calculus
(including, in the case of scientific theories, relevant
correspondence rules), “whose interpretation – what the
calculus is a theory of – is fixed at the point of applica-
tion” [1.25, p. 125].

On the syntactic view of theories, models play
at best a very marginal role as limiting cases or ap-
proximations. This is for two reasons. First, since the
nonobservational part of the theory – that is, the the-
ory proper, as one might put it – does not admit of
direct interpretation, the route to constructing theoret-
ical models on the basis of our directly interpreting the
core ingredients of the theory is obstructed. Interpreta-
tion at the level of observational statements, while still
available to us, is insufficient to imbuemodels with any-
thing other than a purely one-off auxiliary role. Second,
as Cartwright has pointedly argued in criticism directed
at both the syntactic and the semantic views, there is
a shared – mistaken – assumption that theories are a bit
like vending machines [1.26, p. 247]:

“[Y]ou feed it input in certain prescribed forms for
the desired output; it gurgitates for a while; then it
drops out the sought-for-representation, plonk, on
the tray, fully formed, as Athena from the brain of
Zeus.”

This limits what we can do with models, in that
there are only two stages [1.26, p. 247]:

“First, eyeballing the phenomenon, measuring it up,
trying to see what can be abstracted from it that
has the right form and combination that the vend-
ing machine can take as input; secondly, [. . . ] we
do either tedious deduction or clever approximation
to get a facsimile of the output the vending machine
would produce.”

Even if this caricature seems a little too extreme,
the fact remains that, by modeling theories after first-
order formal languages, the syntactic view limits our
understanding of what theories andmodels are and what
we can do with them.

1.4.3 The Semantic View

One standard criticism of the syntactic view is that
it conflates scientific theories with their linguistic for-
mulations. Proponents of the semantic view argue that
by adding a layer of (nonlinguistic) structures between
the linguistic formulations of theories and our assess-
ment of them, one can side-step many of the problems
faced by the syntactic view. According to the seman-
tic view, a theory should be thought of as the set of
set-theoretic structures that satisfy the different linguis-

tic formulations of the theory. A structure that provides
an interpretation for, and makes true, the set of sen-
tences associated with a specific linguistic formulation
of the theory is called a model of the theory. Hence,
the semantic view is often characterized as conceiving
of theories as collections of models. This not only puts
models – where these are to be understood in the logi-
cal sense outlined earlier – center stage in our account
of scientific theories, but also renders the latter funda-
mentally extra-linguistic entities.

An apt characterization of the semantic view is
given by Suppe as follows [1.27, pp. 82–83]:

“This suggests that theories be construed as pro-
pounded abstract structures serving as models for
sets of interpreted sentences that constitute the lin-
guistic formulations. [. . . ] [W]hat the theory does
is directly describe the behavior of abstract sys-
tems, known as physical systems, whose behaviors
depend only on the selected parameters. However,
physical systems are abstract replicas of actual phe-
nomena, being what the phenomena would have
been if no other parameters exerted an influence.”

According to a much-quoted remark by one of the
main early proponents of the semantic view, Suppes,
“the meaning of the concept of model is the same in
mathematics and in the empirical sciences.” However,
as Suppe’s quote above makes clear, models in sci-
ence have additional roles to play, and it is perhaps
worth noting that Suppes himself immediately contin-
ues: “The difference to be found in these disciplines is
to be found in their use of the concept” [1.28, p. 289].
Supporters of the semantic view often claim that it is
closer to the scientific practices of modeling and theo-
rizing than the syntactic view. On this view, according
to van Fraassen [1.29, p. 64],

“[t]o present a theory is to specify a family of struc-
tures, its models; and secondly, to specify certain
parts of those models (the empirical substructures)
as candidates for the direct representation of observ-
able phenomena.”

Unlike what the syntactic view suggests, scientists
do not typically formulate abstract theoretical axioms
and only interpret them at the point of their applica-
tion to observable phenomena; rather, “scientists build
in their mind’s eye systems of abstract objects whose
properties or behavior satisfy certain constraint (includ-
ing law)” [1.23, p. 154] – that is, they engage in the
construction of theoretical models.

Unlike the syntactic view, then, the semantic view
appears to give a more definite answer to the question
what is a model? In line with the account sketched so
far, a model of a theory is simply a (typically extra-
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linguistic) structure that provides an interpretation for,
and makes true, the set of axioms associated with the
theory (assuming that the theory is axiomatizable). Yet
it is not clear that, in applying their view to actual sci-
entific theories, the semanticists always heed their own
advice to treat models as both giving an interpretation,
and ensuring the truth, of a set of statements. More im-
portantly, the model-theoretic account demands that, in
a manner of speaking, a model should fulfil its truth-
making function in virtue of providing an interpretation
for a set of sentences. Other ways of ensuring truth –
for example by limiting the domain of discourse for
a set of fully interpreted sentences, thereby ensuring
that the latter will happen to be true – should not qual-
ify. Yet, as Thomson-Jones [1.30] has argued, purported
applications of the semantic view often stray from the
original model-theoretic motivation. As an example,
consider Suppes’ axiomatization of Newtonian parti-
cle physics. (The rest of this subsection follows [1.30,
pp. 530–531].) Suppes [1.31] begins with the following
definition (in slightly modified form)

Definition 1.1
A system ˇ D hP;T; s;m; f ; gi is a model of particle
mechanics if and only if the following seven axioms are
satisfied:

Kinematical axioms:

1 The set P is finite and nonempty
2 The set T is an interval of real numbers
3 For p in P, sp is twice differentiable.

Dynamical axioms:

4 For p in P, m.p/ is a positive real number
5 For p and q in P and t in T ,

f .p;q; t/D�f .q;p; t/ :
6 For p and q in P and t in T ,

s.p; t/� f .p;q; t/D�s.q; t/� f .q;p; t/ :
7 For p in P and t in T ,

m.p/D2sp.t/D
X

q2P

f .p;q; t/C g.p; t/ :

At first sight, this presentation adheres to core ideas
that motivate the semantic view. It sets out to define an
extra-linguistic entity, ˇ, in terms of a set-theoretical
predicate; the entities to which the predicate applies are
then to be singled out on the basis of the seven axioms.
But as Thomson-Jones points out, a specific model S
defined in this way “is not a serious interpreter of the

predicate or the axioms that compose it” [1.30, p. 531];
it merely fits a structure to the description provided by
the fully interpreted axioms (1)–(7), and in this way en-
sures that they are satisfied, but it does not make them
come out true in virtue of providing an interpretation
(i. e., by invoking semantic theory). To Thomson-Jones,
this suggests that identifying scientific models with
truth-making structures in the model-theoretic sense
may, at least in the sciences, be an unfulfilled promise of
the semantic view; instead, he argues, we should settle
for a less ambitious (but still informative) definition of
a model as “a mathematical structure used to represent
a (type of) system under study” [1.30, p. 525].

1.4.4 Partial Structures

Part of the motivation for the semantic view was its
perceived greater ability to account for how scientists
actually go about developingmodels and theories. Even
so, critics have claimed that the semantic view is unable
to accommodate the great diversity of scientific mod-
els and faces special challenges from, for example, the
use of inconsistency in many models. In response to
such criticisms, a philosophical research program has
emerged over the past two decades, which seeks to es-
tablish a middle ground between the classical semantic
view of models discussed in the previous section and
those who are sceptical about the prospects of formal
approaches altogether. This research program is often
called the partial structures approach, which was pi-
oneered by Newton da Costa and Steven French and
whose vocal proponents include Otávio Bueno, James
Ladyman, and others; see [1.32] and references therein.

Like many adherents of the semantic view, partial
structures theorists hold that models are to be recon-
structed in set-theoretic terms, as ordered n-tuples of
sets: a set of objects with (sets of) properties, quantities
and relations, and functions defined over the quanti-
ties. A partial structure may then be defined as AD
hD;Riii2I, where D is a nonempty set of n-tuples of just
this kind and each Ri is a n-ary relation. Unlike on the
traditional semantic view, the relations Ri need not be
complete isomorphisms, but crucially are partial rela-
tions: that is, they need not be defined for all n-tuples
of elements of D. More specifically, for each partial re-
lation Ri, in addition to the set of n-tuples for which the
relation holds and the set of n-tuples for which it does
not hold, there is also a third set of n-tuples for which
it is underdetermined whether or not it holds. (There
is a clear parallel here with Hesse’s notion of positive,
negative, and neutral analogies which, as da Costa and
French put it, “finds a natural home in the context of
partial structures” [1.32, p. 48].) A total structure is said
to extend a partial structure, if it subsumes the first two

lmagnani@unipv.it



Part
A
|1.5

16 Part A Theoretical Issues in Models

sets without change (i. e., includes all those objects and
definite relations that exist in the partial structures) and
renders each extended relation well defined for every
n-tuple of objects in its domain. This gives rise to a hi-
erarchy of structures and substructures, which together
with the notion of partial isomorphism loosens the re-
quirements on representation, since all that is needed
for two partial models A and A0 to be partially isomor-
phic is that a partial substructure of A be isomorphic to
a partial substructure in A0.

Proponents of the partial structures approach claim
that it “widens the framework of the model-theoretic
approach and allows various features of models and the-
ories – such as analogies, iconic models, and so on – to
be represented,” [1.33, p. 306] that it can successfully
contain the difficulties arising from inconsistencies in
models, and that it is able to capture “the existence of
a hierarchy of models stretching from the data up to
the level of theory” [1.33]. Some critics have voiced
criticism about such sweeping claims. One frequent
criticism concerns the proliferation of partial isomor-
phisms, many of which will trivially obtain; however,

if partial relations are so easy to come by, how can one
tell the interesting from the vast majority of irrelevant
ones? (Pincock speaks in this connection of the “danger
of trivializing our representational relationships” [1.34,
p. 1254].) Suárez and Cartwright add further urgency to
this criticism, by noting that the focus on set-theoretical
structures obliterates all those uses of models and as-
pects of scientific practice that do not amount to the
making of claims [1.35, p. 72]:

“So all of scientific practice that does not consist in
the making of claims gets left out. [. . . ] Again, we
maintain that this inevitably leaves out a great deal
of the very scientific practice that we are interested
in.”

It is perhaps an indication of the limitations of the
partial structures approach that, in response to such crit-
icism, its proponents need to again invoke heuristic fac-
tors, which cannot themselves be subsumed under the
proposed formal framework of models as set-theoretic
structures with partial relations.

1.5 The Folk Ontology of Models

If we accept that scientific models are best thought of
as functional entities (Sect. 1.2), perhaps something can
be learnt about the ontology of scientific models from
looking at their functional role in scientific inquiry.
What one finds across a range of different kinds of mod-
els is the practice of taking models as stand-ins for sys-
tems that are not, in fact, instantiated. AsGodfrey-Smith
puts it, “modelers often take themselves to be describ-
ing imaginary biological populations, imaginary neural
networks, or imaginary economies” [1.36, p. 735] –
that is, they are aware that due to idealization and ab-
straction, model systems will differ in their descriptions
from a full account of the actual world. A model, thus
understood, may be thought of as a “description of
a missing system,” and the corresponding research prac-
tice of describing and characterizing model systems as
though they were real instantiated systems (even though
they are not) may be called, following Thomson-Jones,
the “face-value practice” of scientific modeling [1.37,
pp. 285–286].

On the heels of the face-value practice of scien-
tific modeling, it has been argued, comes a common –
though perhaps not universally shared – understanding
of what models are [1.36, p. 735]:

“[. . . ] to use a phrase suggested by Deena Skol-
nick, the treatment of model systems as comprising

imagined concrete things is the folk ontology of at
least many scientific modelers. It is the ontology
embodied in many scientists’ unreflective habits of
talking about the objects of their study-talk about
what a certain kind of population will do, about
whether a certain kind of market will clear. [. . . O]ne
kind of understanding of model-based science re-
quires that we take this folk ontology seriously, as
part of the scientific strategy.”

The ontology of imagined concrete things – that is,
of entities that, if real, would be on a par with con-
crete objects in the actual world – leads quickly into
the thorny territory of fictionalism.Godfrey-Smith is ex-
plicit about this when he likens models to “something
we are all familiar with, the imagined objects of liter-
ary fiction” [1.36] – such as Sherlock Holmes, J.R.R.
Tolkien’s Middle Earth, and so on. Implicit in this sug-
gestion is, of course, a partial answer to our question
What is a model? – namely, that the ontological sta-
tus of scientific models is just like that of literary (or
other) fictions. The advantages and disadvantages of
such a position will be discussed in detail in Sect. 1.6
of this chapter.

There is, however, another direction into which
a closer analysis of the face-value practice can take us.
Instead of focusing on the ontological status of the en-
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tities we are imagining when we contemplate models
as imagined concrete things, we can focus on the con-
scious processes that attend such imaginings (or, if one
prefers a different way of putting it, the phenomenol-
ogy of interacting with models). Foremost among these
is the mental imagery that is conjured up by the de-
scriptions of models. (Indeed, as we shall see in the
next section, on certain versions of the fictionalist view,
a model prescribes imaginings about its target sys-
tem.) How much significance one should attach to the
mental pictures that attend our conscious considera-
tion of models has been a matter of much controversy:
recall Duhem’s dismissal of mechanical imagery as
a way of conceptualizing electromagnetic phenomena
(Sect. 1.3).

Focusing on the mental processes that accompany
the use of scientific models might lead one to propose
an analysis of models in terms of their cognitive foun-
dations. Nancy Nersessian has developed just such an
analysis, which ties the notion of models in science
closely to the cognitive processes involved in mental
modeling.Whereas the traditional approach in psychol-
ogy had been to think of reasoning as consisting of the
mental application of logical rules to propositional rep-
resentations, mounting empirical evidence of the role
of heuristics and biases suggested that much of human
reasoning proceeds via mental models [1.38], that is,
by carrying out thought experiments on internal mod-
els. A mental model, on this account, is “a structural
analog of a real-world or imaginary situation, event, or
process” as constructed by the mind in reasoning (and,
presumably, realized by certain underlying brain pro-
cesses) [1.39, pp. 11–12]:

“What it means for a mental model to be a struc-
tural analog is that it embodies a representation of
the spatial and temporal relations among, and the
causal structures connecting the events and enti-
ties depicted and whatever other information that
is relevant to the problem-solving talks. [. . . ] The
essential points are that a mental model can be non-
linguistic in form and the mental mechanisms are
such that they can satisfy the model-building and
simulative constraints necessary for the activity of
mental modeling.”

While this characterization of mental models may
have an air of circularity, in that it essentially defines
mental models as place-holders for whatever it takes
to support the activity of mental modeling, it nonethe-
less suggests a place to look for the materials from
which models are constructed: the mind itself, with its
various types of content and mental representation. As
Nersessian puts it: “Whatever the format of the model

itself, information in various formats, including linguis-
tic, formulaic, visual, auditory, kinesthetic, can be used
in its construction” [1.39, p. 12].

How does this apply to the case of scientific mod-
els? As an example, Nersessian considers James Clerk
Maxwell’s famous molecular vortex model, which vi-
sualized the lines of magnetic force around a magnet
as though they were vortices within a continuous fluid
(Fig. 1.1).

As Nersessian sees it, Maxwell’s drawing “is a vi-
sual representation of an analogical model that is ac-
companied with instructions for animating it correctly
in thought” [1.39, p. 13]. And indeedMaxwell gives de-
tailed instructions regarding how to interpret, and bring
to life, the model of which the reader is only given a mo-
mentary snapshot [1.40, p. 477]:

“Let the current from left to right commence in AB.
The row of vortices gh above AB will be set in mo-
tion in the opposite direction to a watch [. . . ]. We
shall suppose the two of vortices kl still at rest, then
the layer of particles between these rows will be
acted on by the row gh,”

and so forth. It does seem plausible to say that such
instructions are intended to prescribe certain mental
models on the part of the reader. Convincing though
this example may be, it still begs the question of what,
in general, a mental model is. At the same time, it
illustrates what is involved in conjuring up a mental
model and which materials – in this case, spatial repre-
sentations, along with intuitions about the mechanical
motion of parts in a larger system – are involved in its
constitution.

k l

p q

A B

g h

Fig. 1.1 Maxwell’s drawing of the molecular vortex model
(after [1.40])
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1.6 Models and Fiction

As noted in the previous section, the face-value practice
of scientific modeling and its concomitant folk ontol-
ogy, according to which models are imagined concrete
things, have a natural affinity to the way we think about
fictions. As one proponent of models as fictions puts
it [1.41, p. 253]:

“The view of model systems that I advocate re-
gards them as imagined physical systems, that is,
as hypothetical entities that, as a matter of fact, do
not exist spatiotemporally but are nevertheless not
purely mathematical or structural in that they would
be physical things if they were real.”

Plausible though this may sound, the devil is in the
details. A first – perhaps trivial – caveat concerns the
restriction that model systems would be physical things
if they were real. In order to allow for the notion of
model to be properly applied to the social and cogni-
tive sciences, such as economics and psychology, it is
best to drop this restriction to physical systems. (On this
point, see [1.30, p. 528].) This leaves as the gist of the
folk-ontological view the thought that model systems,
if they were real, would be just as we imagine them (or,
more carefully, just as the model instructs us to imagine
them).

In order to sharpen our intuitions about fictions, let
us introduce an example of a literary fiction, such as
the following statement from Doyle’s The Adventure of
the Three Garridebs (1924) [1.42]: “Holmes had lit his
pipe, and he sat for some time with a curious smile upon
his face.” There is, of course, no actual human being
that this statement represents: no one is sitting smil-
ingly at 221B Baker Street, filling up the room with
smoke from their pipe. (Indeed, until the 1930s, the
address itself had no real-world referent, as the high-
est number on Baker Street then was No. 85.) And yet
there is a sense in which this passage does seem to rep-
resent Sherlock Holmes and, within the context of the
story, tells us something informative about him. In par-
ticular, it seems to lend support to certain statements
about Sherlock Holmes as opposed to others. If we
say Holmes is a pipe smoker, we seem to be asserting
something true about him, whereas if we say Holmes is
a nonsmoker, we appear to be asserting something false.
One goal of the ontology of fictions is to make sense of
this puzzle.

Broadly speaking, there are two kinds of philo-
sophical approaches – realist and antirealist – regarding
fictions. On the realist approach, even though Sher-
lock Holmes is not an actual human being, we must
grant that he does exist in some sense. Following

Meinong [1.43], we might, for example, distinguish
between being and existence and consider Sherlock
Holmes to be an object that has all the requisite prop-
erties we normally attribute to him, except for the
property of existence. Or we might take fictions to
have existence, but only as abstract entities, not as ob-
jects in space and time. By contrast, antirealists about
fictions deny that they have independent being or ex-
istence and instead settle for other ways of making
sense of how we interpret fictional discourse. Following
Bertrand Russell, we might paraphrase the statement
Sherlock Holmes is a pipe smoker and resides at 221B
Baker Street without the use of a singular term (Sher-
lock Holmes), solely in terms of a suitably quantified
existence claim: There exists one and only one x such
that x is a pipe smoker and x resides at 221B Baker
Street. However, while this might allow us to parse the
meaning of further statements about Sherlock Holmes
more effectively, it does not address the puzzle that cer-
tain claims (such as He is a pipe smoker) ring true,
whereas others do not – since it renders each part of
the explicated statement false. This might not seem like
a major worry for the case of literary fictions, but it
casts doubt on whether we can fruitfully think about sci-
entific models in those terms, given the epistemic role
of scientific models as contributors to scientific knowl-
edge.

In recent years, an alternative approach to fic-
tions has garnered the attention of philosophers of
science, which takes Walton’s notion of “games of
make-believe” as its starting point. Walton introduces
this notion in the context of his philosophy of art, where
he characterizes (artistic) representations as “things
possessing the social function of serving as props in
games of make-believe” [1.44, p. 69]. In games of
make-believe, participants engage in behavior akin to
children’s pretend play: when a child uses a banana as
a telephone to call grandpa, this action does not amount
to actually calling her grandfather (and perhaps not even
attempting to call him); rather, it is a move within the
context of play – where the usual standards of realism
are suspended – whereby the child resolves to treat the
situation as if it were one of speaking to her grandfather
on the phone.

The banana is simply a prop in this game of make-
believe. The use of the banana as a make-believe
telephone may be inspired by some physical similarity
between the two objects (e.g., their elongated shape, or
the way that each can be conveniently held to one’s ear
and mouth at the same time), but it is clear that props
can go beyond material objects to include, for example,
linguistic representations (as would be the case with
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the literary figure of Sherlock Holmes). While the rules
governing individual pretend play may be ad hoc, com-
munal games of make-believe are structured by shared
normative principles which authorize certain moves as
legitimate, while excluding other moves as illegitimate.
It is in virtue of such principles that fictional truths can
be generated: for example, a toy model of a bridge at the
scale of 1 W 1000 prescribes that, “if part of the model
has a certain length, then, fictionally, the corresponding
part of the bridge is a thousand times that length” [1.45,
p. 38] – in other words, even though the model itself
is only a meter long, it represents the bridge as a thou-
sand meters long. Note that the scale model could be
a model of a bridge that is yet to be built – in which
case it would still be true that, fictionally, the bridge is
a thousand meters long: props, via the rules that govern
them, create fictional truths.

One issue of contention has been what kinds of
metaphysical commitments such a view of models
entails. Talk of imagined concrete things as the ma-
terial from which models are built has been criticized
for amounting to an indirect account of modeling, by
which [1.46, pp. 308, fn. 14]

“prepared descriptions and equations of motion ask
us to imagine an imagined concrete system which
then bears some other form of representation rela-
tion to the system being modelled.”

A more thoroughgoing direct view of models as
fictions is put forward by Toon, who considers the fol-
lowing sentence from Wells’s The War of the Worlds:
“The dome of St. Paul’s was dark against the sunrise,
and injured, I saw for the first time, by a huge gaping
cavity on its western side” [1.47, p. 229]. As Toon ar-
gues [1.46, p. 307]:

“There is no pressure on us to postulate a fictional,
damaged, St. Paul’s for this passage to represent; the
passage simply represents the actual St. Paul’s. Sim-
ilarly, on my account, our prepared description and
equation of motion do not give rise to a fictional,
idealised bouncing spring since they represent the
actual bouncing spring.”

By treating models as prescribing imaginings about
the actual objects (where these exist and are the model’s
target system), we may resolve to imagine all sorts of

things that are, as a matter of fact, false; however, so
the direct view holds, this is nonetheless preferable to
the alternative option of positing independently exist-
ing fictional entities [1.45, p. 42]. Why might one be
tempted to posit, as the indirect view does, that fictional
objects fitting the model descriptions must exist? An
important motivation has to do with the assertoric force
of our model-based claims. As Giere puts it: “If we in-
sist on regarding principles as genuine statements, we
have to find something that they describe, something
to which they refer” [1.48, p. 745]. In response, pro-
ponents of the direct view have disputed the need “to
regard theoretical principles formulated in modeling as
genuine statements”; instead, as Toon puts it, “they are
prescriptions to imagine” [1.45, p. 44].

One potential criticism the models as fictions view
needs to address is the worry that, by focusing on the
user’s imaginings, what a model is becomes an en-
tirely subjective matter. A similar worry may be raised
with respect to the mental models view discussed in
Sect. 1.5: if a model is merely a place-holder for what-
ever is needed to sustain the activity of mental modeling
(or imagining) on the part of an agent, how can one be
certain that the same kinds of models (or props) reli-
ably give rise to the same kinds of mental modeling
(or imaginings)? In this respect, at least, the models
as fictions view appears to be in a stronger position.
Recall that, unlike in individual pretend play (or uncon-
strained imagining), in games of make-believe certain
imaginations are sanctioned by the prop itself and the –
public, shared – rules of the game. As a result, “some-
one’s imaginings are governed by intersubjective rules,
which guarantee that, as long as the rules are respected,
everybody involved in the game has the same imagin-
ings” [1.41, p. 264] – though it should be added, not
necessarily the same mental images.

In his 1963 book, Models and Metaphors, Black
expressed his hope that an “exercise of the imagina-
tion, with all its promise and its dangers” may help
pave the way for an “understanding of scientific mod-
els and archetypes” as “a reputable part of scientific
culture” [1.4, p. 243]. Even though Black was writing
in general terms (and perhaps for rhetorical effect), his
characterization would surely be considered apt by the
proponents of the models as fictions view, who believe
that models allow us to imagine their targets to be a cer-
tain way, and that, by engaging in such imaginings, we
can gain new scientific insights.
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1.7 Mixed Ontologies: Models as Mediators and Epistemic Artifacts

In Sect. 1.1, a distinction was drawn between informa-
tional views of models, which emphasize the objective,
two-place relation between the model and what it repre-
sents, and pragmatic views, according to which a model
depends at least in part on the user’s beliefs or in-
tentions, thereby rendering model-based representation
a three-place relation between model, target, and user.
Unsurprisingly, which side one comes down on in this
debate will also have an effect on one’s take on the
ontology of scientific models. Hence, structuralist ap-
proaches (e.g., the partial structures approach discussed
in Sect. 1.4.4) are a direct manifestation of the informa-
tional view, whereas the models as fictions approach –
especially insofar as it considers models to be props for
the user’s imagination – would be a good example of
the pragmatic view. The pragmatic dimension of sci-
entific representation has received growing attention in
the philosophical literature, and while this is not the
place for a detailed survey of pragmatic accounts of
model-based representation in particular, the remainder
of this section will be devoted to a discussion of the on-
tological consequences of several alternative pragmatic
accounts of models. Particular emphasis will be placed
on what I shall call mixed ontologies, that is, accounts
of models that emphasize the heterogeneity and diver-
sity of their components.

1.7.1 Models as Mediators

Proponents of pragmatic accounts of models usually
take scientific practice as the starting point of their
analysis. This often directly informs how they think
about models; in particular, it predisposes them to treat
models as the outcome of a process of model con-
struction. On this view, it is not only the function of
models – for example, their capacity to represent tar-
get systems – which depends on the beliefs, intentions,
and cognitive interests of a model user, but also the
very nature of models which is dependent on human
agents in this way. In other words, what models are
is crucially determined by their being the result of
a deliberate process of model construction. Model con-
struction, most pragmatic theorists of models insist, is
marked by “piecemeal borrowing” [1.35, p. 63] from
a range of different domains. Such conjoining of het-
erogeneous components to form a model cannot easily
be accommodated by structuralist accounts, or so it has
been claimed; at the very least, there is considerable
tension between, say, the way that the partial structures
approach allows for a nested hierarchy of models (con-
nected with one another via partial isomorphisms) and
the much more ad hoc manner in which modelers piece

together models from a variety of ingredients. (On this
point, see especially [1.35, p. 76].)

A number of such accounts have coalesced into
what has come to be called the models as mediators
view (see [1.49] for a collection of case studies). Ac-
cording to this view, models are to be regarded neither
as a merely auxiliary intermediate step in applying
or interpreting scientific theories, nor as constructed
purely from data. Rather, they are thought of as me-
diating between our theories and the world in a partly
autonomous manner. As Morrison and Morgan put it,
models “are not situated in the middle of an hierarchical
structure between theory and the world,” but oper-
ate outside the hierarchical “theory-world axis” [1.50,
pp. 17–18]. A central tenet of the models as media-
tors view is the thesis that models “are made up from
a mixture of elements, including those from outside the
domain of investigation”; indeed, it is thought to be pre-
cisely in virtue of this heterogeneity that they are able
to retain “an element of independence from both theory
and data (or phenomena)” [1.50, p. 23].

At one level, the models as mediators view appears
to be making a descriptive point about scientific prac-
tice. AsMorrison andMorgan [1.50] point out, there is
“no logical reason why models should be constructed
to have these qualities of partial independence” [1.50,
p. 17], though in practice they do exhibit them, and
examples that involve the integration of heterogeneous
elements beyond theory and data “are not the exception
but the rule” [1.50, p. 15]. Yet, there is also the fur-
ther claim that models could not fulfil their epistemic
function unless they are partially autonomous entities:
“we can only expect to use models to learn about our
theories or our world if there is at least partial indepen-
dence of the model from both” [1.50, p. 17]. Given that
models are functional entities (in the sense discussed
in Sect. 1.2), this has repercussions for the ontological
question of what kind of entities models are. More often
than not, models will integrate – perhaps imperfectly,
but in irreducible ways – heterogeneous components
from disparate sources, including (but not limited to)
“elements of theories and empirical evidence, as well
as stories and objects which could form the basis for
modeling decisions” [1.50, p. 15]. As proponents of
the models as mediators view are at pains to show,
even in cases where models initially seem to derive
straightforwardly from fundamental theory or empiri-
cal data, closer inspection reveals the presence of other
elements – such as “simplifications and approxima-
tions which have to be decided independently of the
theoretical requirements or of data conditions” [1.50,
p. 16].
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For the models as mediators approach, any answer
to the question what is a model? must be tailored to
the specific case at hand: models in high-energy physics
will have a very different composition, and will consist
of an admixture of different elements, than, say, models
in psychology. However, as a general rule, no model –
or, at any rate, no interesting model – will ever be fully
reducible to theory and data; attempts to clean up the
ontology of scientific models so as to render them either
purely theoretical or entirely empirical, according to the
models as mediators view, misconstrue the very nature
and function of models in science.

1.7.2 Models as Epistemic Artifacts

A number of recent pragmatic approaches take the mod-
els as mediators view as their starting point, but suggest
that it should be extended in various ways. Thus,Knuut-
tila acknowledges the importance of mediation between
theory and data, but a richer account of models is
needed to account for how this partial independence
comes about. For Knuuttila, materiality is the key en-
abling factor that imbues models with such autonomy:
it is “the material dimension, and not just additional ele-
ments, that makes models able to mediate” [1.51, p. 48].
Materiality is also seen as explaining the various epis-
temic functions that models have in inquiry, not least by
way of analogy with scientific experiments. For exam-
ple, just as in experimentation much effort is devoted to
minimizing unwanted external factors (such as noise),
in scientific models certain methods of approximation
and idealization serve the purpose of neutralizing un-
desirable influences. Models typically draw on variety
of formats and representations, in a way that enables
certain specific uses, but at the same time constrains
them; this breaks with the traditional assumption that
we can “clearly tell apart those features of our scientific
representations that are attributable to the phenom-
ena described from the conventions used to describe
them” [1.52, p. 268].

On the account sketched thus far, attempting to
characterize the nature and function of models in the

language of theories and data would, in the vast ma-
jority of cases, give a misleading impression; instead,
models are seen as epistemic tools [1.52, p. 267]:

“Concrete artifacts, which are built by various rep-
resentational means, and are constrained by their
design in such a way that they enable the study
of certain scientific questions and learning through
constructing and manipulating them.”

This links the philosophical debate about models
to questions in the philosophy of technology, for ex-
ample concerning the ontology of artifacts, which are
likewise construed as both material bodies and func-
tional objects. It also highlights the constitutive role
of design and construction, which applies equally to
models with a salient material dimension – such as
scale models in engineering or ball-and-stick mod-
els in chemistry – and to largely theoretical models.
For example, it has been argued that mathematical
models (e.g., in many-body physics) may be fruit-
fully characterized not only in theoretical terms (say,
as a Hamiltonian) or as mathematical entities (as an
operator equation), but also as the output of a mature
mathematical formalism (in this case, the formalism of
second quantization) – that is, a physically interpreted
set of notational rules that, while embodying various
theoretical assumptions, is not usually reducible to fun-
damental theory [1.53].

As in the case of the models as mediators approach,
the ontological picture that emerges from the artifac-
tual approach to models is decidedly mixed: models
will typically consist of a combination of different
materials, media and formats, and deploy different rep-
resentational means (such as pictorial, symbolic, and
diagrammatic notations) as well as empirical data and
theoretical assumptions. Beyond merely acknowledg-
ing the heterogeneity of such a mixture of elements,
however, the artifactual approach insists that it is in
virtue of their material dimension that the various el-
ements of a model, taken together, enable and constrain
its representational and other epistemic functions.

1.8 Summary

As the survey in this chapter demonstrates, the term
model in science refers to a great variety of things:
physical objects such as scale models in engineering,
descriptions and sets of sentences, set-theoretic struc-
tures, fictional objects, or an assortment of all of the
above. This makes it difficult to arrive at a uniform char-
acterization of models in general. However, by paying

close attention to philosophical accounts of model-
based representation, it is possible to discern certain
clusters of positions. At a general level, it is useful to
think of models as functional entities, as this allows one
to explore how different functional perspectives lead to
different conceptions of the ontology of models. Hence,
with respect to the representational function of mod-
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els, it is possible to distinguish between informational
views, which we found to be closely associated with
structuralist accounts of models, and pragmatic views,
which tend to give rise to more heterogeneous accounts,
according to which models may be thought of as props
for the imagination, as partly autonomous mediators
between theory and data, or as epistemic artifacts con-
sisting of an admixture of heterogeneous elements.

When nineteenth century physicists began to re-
flect systematically on the role of analogy in science,

they did so out of a realization that it may not al-
ways be possible to apply fundamental theory directly
to reality, either because any attempt to do so faces
insurmountable complexities, or because no such fun-
damental theory is as yet available. At the beginning
of the twenty-first century, these challenges have not
diminished, and scientists find themselves turning to
an ever greater diversity of scientific models, a uni-
fied philosophical theory of which is still outstand-
ing.
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2. Models and Theories

Demetris Portides

Both the received view (RV) and the semantic view
(SV) of scientific theories are explained. The argu-
ments against the RV are outlined in an effort to
highlight how focusing on the syntactic character
of theories led to the difficulty in characterizing
theoretical terms, and thus to the difficulty in ex-
plicating how theories relate to experiment. The
absence of the representational function of models
in the picture drawn by the RV becomes evident;
and one does not fail to see that the SV is in part
a reaction to – what its adherents consider to be
an – excessive focus on syntax by its predecessor
and in part a reaction to the complete absence
of models from its predecessor’s philosophical at-
tempt to explain the theory–experiment relation.
The SV is explained in an effort to clarify its main
features but also to elucidate the differences be-
tween its different versions. Finally, two kinds
of criticism are explained that affect all versions
of the SV but which do not affect the view that
models have a warranted degree of importance in
scientific theorizing.
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Scientists use the term model with reference to iconic
or scaled representations, analogies, and mathematical
(or abstract) descriptions. Although all kinds of models
in science may be philosophically interesting, mathe-
matical models stand out. Representation with iconic or
scale models, for instance, mostly applies to a particu-
lar state of a system at a particular time, or it requires
the mediation of a mathematical (or abstract) model in
order to relate to theories. Representation via mathe-
matical models, on the other hand, is of utmost interest
because it applies to types of target systems and it can
be used to draw inferences about the time-evolution of
such systems, but more importantly for our purposes
because of its obvious link to scientific theories.

In the history of philosophy of science, there have
been two systematic attempts to explicate the relation
of such models to theory. The first is what had been
labeled the received view (RV) of scientific theories

that grew out of the logical positivist tradition. Ac-
cording to this view, theories are construed as formal
axiomatic calculi whose logical consequences extend
to observational sentences. Models are thought to have
no representational role; their role is understood meta-
mathematically, as interpretative structures of subsets of
sentences of the formal calculus. Ultimately it became
clear that such a role ascribed to models does not do jus-
tice to how science achieves theoretical representations
of phenomena. This conclusion was reached largely
due to the advent of the second systematic attempt to
explore the relation between theory and models, the se-
mantic view (SV) or model-theoretic view of scientific
theories. The semantic view regards theories as classes
of models that are directly defined without resort to
a formal calculus. Thus, models in this view are inte-
gral parts of theories, but they are also the devices by
which representation of phenomena is achieved.
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Although, the SV recognized the representational
capacity of models and exposed that which was con-
cealed by the logical positivist tradition, namely that
one of the primary functions of scientific models is to
apply the abstract theoretical principles in ways that
actual physical systems can be represented, it also gen-
erated a debate concerning the complexities involved
in scientific representation. This recent debate has sig-
nificantly enhanced our understanding of the represen-
tational role of scientific models. At the same time it
gave rise, among other things, to questions regarding
the relation between models and theory. The adherents
of the SV claim that a scientific theory is identified with
a class of models, hence that models are constitutive
parts of theory and thus they represent by means of
the conceptual apparatus of theory. The critics of the
SV, however, argue that those models that are success-
ful representations of physical systems utilize a much
richer conceptual apparatus than that provided by the-
ory and thus claim that they should be understood as
partially autonomous from theory.

A distinguishing characteristic of this debate is the
notion of representational model, that is, a scientific
entity which possesses the necessary features that ren-
der it representational of a physical system. In the
SV, theoretical models, that is, mathematical models
that are constitutive parts of theory structure, are con-
sidered to be representational of physical systems. Its
critics, however, argue that in order to provide a model
with the capacity to represent actual physical systems,
the theoretical principles from which the model arises

are typically supplemented with ingredients that derive
from background knowledge, from semiempirical re-
sults and from experiment. In order to better understand
the character of successful representational models, ac-
cording to this latter view, we must move away from
a purely theory-driven view of model construction and
also place our emphasis on the idea that representational
models are entities that consist of assortments of the
aforementioned sorts of conceptual ingredients.

In order to attain insight into how models could re-
late to theory and also be able to use that insight in
addressing other issues regarding models, in what fol-
lows, I focus on the RV and the SV of scientific theories.
Each of the two led to a different conception of the na-
ture of theory structure and subsequently to a different
suggestion for what scientific models are, what they are
used for, and how they function. In the process of ex-
plicating these two conceptions of theory structure, I
will also review the main arguments that have been pro-
posed against them. The RV has long been abandoned
for reasons that I shall explore in Sect. 2.1, but the SV
lives on despite certain inadequacies that I shall also
explore in Sect. 2.2. Toward the end of Sect. 2.2, in
Sect. 2.2.4, I shall very briefly touch upon the more re-
cent view that the relation between theory and models
is far more complex than advocates of the RV or the
SV have claimed, and that models in science demon-
strate a certain degree of partial autonomy from the
theory that prompts their construction and because of
this a unitary account of models obscures significant
features of scientific modeling practices.

2.1 The Received View of Scientific Theories

What has come to be called the RV of scientific theo-
ries is a conception of the structure of scientific theories
that is associated with logical positivism, and which
was the predominant view for a large part of the twen-
tieth century. It is nowadays by and large overlooked
hence it is anything but received. Despite its inappro-
priate label, clarifying its major features as well as
understanding the major philosophical arguments that
revealed its inadequacies would not only facilitate ac-
quaintance with the historical background of the debate
about the structure of scientific theories and give the
reader a flavor of the difficulties involved in charac-
terizing theory structure, but it would also be helpful
in understanding some characteristics of contempo-
rary views and how models came to occupy central
stage in current debates on how theories represent and
explain phenomena. With this intention in mind, I pro-
ceed in this section by briefly explaining the major
features of the RV and continue with sketching the

arguments that exposed its weaknesses in Sects. 2.1.1–
2.1.6.

The RV construes scientific theories as Hilbert-style
formal axiomatic calculi, that is, axiomatized sets of
sentences in first-order predicate calculus with iden-
tity. A scientific theory is thus identified with a formal
language, L, having the following features. The nonlog-
ical terms of L are divided into two disjoint classes:
(1) the theoretical terms that constitute the theoretical
vocabulary, VT, of L and (2) the observation terms that
constitute the observation vocabulary, VO, of L. Thus,
L can be thought of as consisting of an observation
language, LO, that is, a language that consists only of
observation terms, a theoretical language, LT, that is,
a language that consists only of theoretical terms, and
a part that consists of mixed sentences that are made
up of both observation and theoretical terms. The the-
oretical postulates or the axioms of the theory, T (i. e.,
what we, commonly, refer to as the high-level scientific
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laws), consist only of terms from VT. This construal of
theories is a syntactic system, which naturally requires
semantics in order to be useful as a model of scientific
theories.

It is further assumed that the terms of VO refer to
directly observable physical objects and directly ob-
servable properties and relations of physical objects.
Thus the semantic interpretation of such terms, and the
sentences belonging to LO, is provided by direct obser-
vation. The terms of VT, and subsequently all the other
sentences of L not belonging to LO, are partially inter-
preted via the theoretical postulates, T , and – a finite set
of postulates that has come to be known as – the corre-
spondence rules, C. The latter are mixed sentences of L,
that is, they are constructed with at least one term from
each of the two classes VT and VO. (The reader could
consult Suppe [2.1] for a detailed exposition of the RV,
but also for a detailed philosophical study of the de-
velopments that the RV underwent under the weight of
several criticisms until it reached, what Suppe calls, the
“final version of the RV”).

We could synopsize how scientific theories are con-
ceived according to the RV as follows: The scientific
laws, which as noted constitute the axioms of the the-
ory, specify relations holding between the theoretical
terms. Via a set of correspondence rules, theoretical
terms are reduced to, or defined by, observation terms.
Observation terms refer to objects and relations of the
physical world and thus are interpreted. Hence, a scien-
tific theory, according to the RV, is a formal axiomatic
system having as point of departure a set of theoret-
ical postulates, which when augmented with a set of
correspondence rules has deductive consequences that
stretch all the way to terms, and sentences consisting of
such terms, that refer to the directly observable physi-
cal objects. Since according to this view, the backbone
of a scientific theory is the set of theoretical postulates,
T , and a partial interpretation of L is given via the set of
correspondence rules, C, let TC (i. e., the union set of T
and C) designate the scientific theory.

From this sketch, it can be inferred that the RV
implies several philosophically interesting things. For
the purposes of this chapter, it suffices to limit the dis-
cussion only to those implications of the RV that are
relevant to the criticisms that have contributed to its
downfall. These implications, which in one way or an-
other relate to the difficulty in characterizing VT terms,
are:

1. It relies on an observational–theoretical distinction
of the terms of L.

2. It embodies an analytic–synthetic distinction of the
sentences of L.

3. It employs the obscure notion of correspondence
rules to account for the interpretation of theoretical
terms and to account for theory application.

4. It does not assign a representational function to
models.

5. It assigns a deductive status to the relation between
empirical theories and experiment.

6. It commits to a theory consistency condition and to
a meaning invariance condition.

2.1.1 The Observation–Theory Distinction

The separation of L into VO and VT terms implies that
the RV requires an observational–theoretical distinction
in the terms of the vocabulary of the theory. This idea
was criticized in two ways. The first kind of objection to
the observation–theory distinction relied on a twofold
argument. On the one hand, the critics claim that an
observation–theory distinction of scientific terms can-
not be drawn; and on the other, that a classification
of terms following such a distinction would give rise
to a distinction of observational–theoretical statements,
which also cannot be drawn for scientific languages.
The second kind of objection to the distinction relies
on attempts to establish accounts of observation that
are incompatible with the observation–theory distinc-
tion and on showing that observation statements are
theory laden.

The Untenability
of the Observation–Theory Distinction

The argument of the first kind that focuses on the un-
tenability of the observation–theory distinction is due
to Achinstein [2.2, 3] and Putnam [2.4]. Achinstein ex-
plores the sense of observation relevant to science, that
is, “the sense in which observing involves visually at-
tending to something,” and he claims that this sense
exhibits the following characteristics:

1. Observation involves attention to the various as-
pects or features of an item depending on the ob-
server’s concerns and knowledge.

2. Observation does not necessarily involve recogni-
tion of the item.

3. Observation does not imply that whatever is ob-
served is in the visual field or in the line of sight
of the observer.

4. Observation could be achieved indirectly.
5. The description of what one observes can be done

in different ways (The reader could refer to Achin-
stein [2.3, pp. 160–165] for an explication of these
characteristics of observation by the use of specific
examples).
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If now one urges an observation–theory distinction
by simply constructing lists of observable and unob-
servable terms (as proponents of the RV according
to Achinstein do), the distinction becomes untenable.
For example, according to typical lists of unobserv-
ables, electron is a theoretical term. But based on points
(3) and (4) above, Achinstein claims, this could be re-
jected. Similarly based on point (5), Achinstein also
rejects the tenability of such a distinction at the level
of statements, because “what scientists as well as oth-
ers observe is describable in many different ways, using
terms from both vocabularies” [2.3, p. 165].

Furthermore, if, as proponents of the RV have of-
ten claimed, (For instance, Hempel [2.5], Carnap [2.6]
and [2.7]), items in the observational list are directly
observable whereas those in the theoretical list are not,
then Achinstein [2.3, pp. 172–177] claims that a close
construal of directly observable reveals that the desired
classification of terms into the two lists fails. He ex-
plains that directly observable could mean that it can be
observed without the use of instruments. If this is what
advocates of the RV require, then it does not warrant
the distinction. First, it is not precise enough to clas-
sify things seen by images and reflections. Second, if
something is not observable without instruments means
that no aspect of it is observable without instruments
then things like temperature and mass would be observ-
ables, since some aspects of them are detected without
instruments. If however directly observable means that
no instruments are required to detect its presence, then
it would be insufficient because one cannot talk about
the presence of temperature. Finally, if it means that
no instruments are required to measure it or its prop-
erties, then such terms as volume, weight, etc. would
have to be classified as theoretical terms. Hence, Achin-
stein concludes that the notion of direct observability is
unclear and thus fails to draw the desired observation–
theory distinction.

Along similar lines, Putnam [2.4] argues that the
distinction is completely broken-backed mainly for
three reasons. First, if an observation term is one that
only refers to observables then there are no observation
terms. For example, the term red is in the observable
class but it was used by Newton to refer to a theoretical
term, namely red corpuscles. Second, many terms that
refer primarily to the class of unobservables are not the-
oretical terms. Third, some theoretical terms, that are of
course the outcome of a scientific theory, refer primarily
to observables. For example, the theory of evolution, as
put forward by Darwin, referred to observables by em-
ploying theoretical terms.

What these arguments accomplish is to highlight
the fact that scientific languages employ terms that can-
not clearly and easily be classified into observational or

theoretical. They do not however show the untenabil-
ity of the observation–theory distinction as employed
by the RV. As Suppe [2.8] correctly observes, what they
show is that the RV needs a sufficiently rich artificial
language for science, no matter how complex it may
turn out to be. Such a language, in which presumably
the observation–theory distinction is tenable, must have
a plethora of terms, such that, to use his example, the
designated term redo will refer to the observable occur-
rences of the predicate red, and the designated term redt
will refer to the unobservable occurrences.

The Theory-Ladenness of Observation
Hanson’s argument is a good example of the second
kind, in which an attempt is made to show that there is
no theory-neutral observation language and that obser-
vation is theory-laden and thus establish an account of
observation that is incompatible with the observation–
theory distinction required by the RV (Hanson [2.9,
pp. 4–30]. Hanson [2.10, pp. 59–198]. Also Suppe [2.1,
pp. 151–166]). He does this by attempting to establish
that an observation language that intersubjectively can
be given a theory-independent semantic interpretation,
as the RV purports, cannot exist.

He begins by asking whether two people see the
same things when holding different theories. We could
follow his argument by reference to asking whether Ke-
pler and Tycho Brahe see the same thing when looking
at the sun rising. Kepler, of course, holds that the earth
revolves around the sun, while Tycho holds that the sun
revolves around the earth. Hanson addresses this ques-
tion by considering ambiguous figures, that is, figures
that sometimes can be seen as one thing and other times
as another. The most familiar example of this kind is the
duck–rabbit figure.

When confronted with such figures, viewers see ei-
ther a duck or a rabbit depending on the perspective
they take, but in both cases they see the same dis-
tal object (i. e., the object that emits the rays of light
that impinge the retina). Hanson uses this fact to de-
velop a sequence of arguments to counter the standard
interpretations of his time. There were two standard
interpretations at the time. The first was that the per-
ceptual system delivers the same visual representation
and then cognition (thought) interprets this either as
a duck or as a rabbit. The other was that the perceptual
system outputs both representations and then cogni-
tion chooses one of the two. Both interpretations are
strongly linked with the idea that the perceptual pro-
cess and the cognitive process function independently
of one another, that is, the perceptual system delivers its
output independent of any cognitive influences. How-
ever, Hanson challenges the assumption that the two
observers see the same thing and via thought they in-
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terpret it differently. He claims that perception does not
deliver either a duck or a rabbit, or an ambiguous figure,
and then via some other independent process thought
chooses one or the other. On the contrary, the switch
from seeing one thing to seeing the other seems to take
place spontaneously and moreover a process of back
and forth seeing without any thinking seems to be in-
volved. He goes on to ask, what could account for the
difference in what is seen? His answer is that what
changes is the organization of the ambiguous figure as
a result of the conceptual background of each viewer.
This entails that what one sees, the percept, depends
on the conceptual background that results from one’s
experience and knowledge, which means that thought
affects the formation of the percept; thus perception
and cognition become intertwined. When Tycho and
Kepler look at the sun, they are confronted with the
same distal object but they see different things because
their conceptual organizations of their experiences are
vastly different. In other words, Hanson’s view is that
the percept depends on background knowledge, which
means that cognition influences perceptual processing.
Consequently, observation is theory laden, namely, ob-
servation is conditional on background knowledge.

By this argument, Hanson undermines the RV’s po-
sition, which entails that Kepler and Brahe see the same
thing but interpret it differently; and also establishes
that conceptual organizations are features of seeing
that are indispensable to scientific observation and thus
that Kepler and Brahe see two different things because
perception inherently involves interpretation, since the
former is conditional on background knowledge. It is,
however, questionable whether Hanson’s arguments are
conclusive. Fodor [2.11–13], Pylyshyn [2.14, 15], and
Raftopoulos [2.16–18], for example, have extensively
argued on empirical grounds that perception, or at least
a part of it, is theory independent and have proposed
explanations of the ambiguous figures that do not in-
voke cognitive effects in explaining the percept and the
switch between the two interpretations of the figure.
This debate, therefore, has not yet reached its conclu-
sion; and many today would argue that fifty or so years
after Hanson the arguments against the theory ladenness
of observation are much more tenable.

2.1.2 The Analytic–Synthetic Distinction

The RV’s dependence on the observation–theory dis-
tinction is intimately linked to the requirement for an
analytic–synthetic distinction. An argument to defend
this claim is given by Suppe [2.1, pp. 68–80]. Here is
a sketch of that argument. The analytic–synthetic dis-
tinction is embodied in the RV, because (as suggested
by Carnap [2.19]) implicit in TC are meaning postu-

lates (or semantical rules) that specify the meanings of
sentences in L. However, if meaning specification were
the only function of TC then TC would be analytic,
and in such case it would not be subject to empirical
investigation. TC must therefore have a factual com-
ponent, and the meaning postulates must separate the
meaning from the factual component. This would im-
ply an analytic–synthetic separation, if those sentences
in L that are logical truths or logical consequences of
the meaning postulates are analytic and all nonanalytic
sentences are understood to be synthetic. Moreover, any
nonanalytic sentence in L taken in conjunction with the
class of meaning postulates would have certain empiri-
cal consequences. If the conjunction is refuted or con-
firmed by directly observable evidence, this will reflect
only on the truth value of the conjunction and not on the
meaning postulates. Hence such conjunctive sentences
can only be synthetic. Thus every nonanalytic sentence
of LO and every sentence of L constituted by a mixed
vocabulary is synthetic. So the observation–theory dis-
tinction supports an analytic–synthetic distinction of
the sentences of L.

The main criticism against the analytic–synthetic
distinction consists of attempts to show its untenabil-
ity. Quine [2.20] points out that there are two kinds
of analytic statements: (a) logical truths, which remain
true under all interpretations, and (b) statements that
are true by virtue of the meaning of their nonlogical
terms, for example, No bachelor is married. He then
argues that the analyticity of statements of the second
kind cannot be established without resort to the notion
of synonymy, and that the latter notion is just as prob-
lematic as the notion of analyticity. The argument runs
roughly as follows. Given that meaning (or intension)
is clearly distinguished from its extension, that is, the
class of entities to which it refers, a theory of meaning
is primarily concerned with cognitive synonymy (i. e.,
the synonymy of linguistic forms). For example, to say
that bachelor and unmarried man are cognitively syn-
onymous is to say that they are interchangeable in all
contexts without change of truth value. If such were
the case then the statement No bachelor is married
would become No unmarried man is married, which
would be a logical truth. In other words, statements
of kind (b) are reduced to statements of kind (a) if
only we could interchange synonyms for synonyms.
But as Quine argues, the notion of interchangeability
salva veritate is an extensional concept and hence does
not help with analyticity. In fact, no analysis of the
interchangeability salva veritate account of synonymy
is possible without recourse to analyticity, thus mak-
ing such an effort circular, unless interchangeability is
“[. . . ] relativized to a language whose extent is spec-
ified in relevant respects” [2.20, p. 30]. That is to say,
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we first need to knowwhat statements are analytic in or-
der to decide which expressions are synonymous; hence
appeal to synonymy does not help with the notion of
analyticity.

Similarly White [2.21] argues that an artificial lan-
guage, L1, can be constructed with appropriate defi-
nitional rules, in which the predicates P1 and Q1 are
synonymous whereas P1 and Q2 are not; hence mak-
ing such sentences as8x .P1.x/! Q1.x// logical truths
and such sentences as 8x .P1.x/! Q2.x// synthetic. In
a different artificial language L2, P1 could be defined
to be synonymous to Q2 and not to Q1, hence mak-
ing the sentence 8x .P1.x/! Q2.x// a logical truth and
the sentence 8x .P1.x/! Q1.x// synthetic. This relies
merely upon convention. However, he asks, in a natural
language what rules are there that dictate what choice
of synonymy can be made such that one formula is
a synthetic truth rather than analytic? The key point of
the argument is therefore that in a natural language or
in a scientific language, which are not artificially con-
structed and which do not contain definitional rules, the
notion of analyticity is unclear.

Nevertheless, it could be argued that such argu-
ments as the above are not entirely conclusive, primar-
ily because the RV is not intended as a description of ac-
tual scientific theories. Rather, the RV is offered as a ra-
tional reconstruction of scientific theories, that is, an
explication of the structure of scientific theories. It does
not aim to describe how actual theories are formulated,
but only to indicate a logical framework (i. e., a canon-
ical linguistic formulation) in which theories can be es-
sentially reformulated. Therefore, all that proponents of
the RV, needed to show was that the analytic–synthetic
distinction is tenable in some artificial language (with
meaning postulates) in which scientific theories could
potentially be reformulated. In view of this, in order
for the RV to overcome the obscurity of the notion of
analyticity, pointed out by Quine and White, it would
require the conclusion of a project that Carnap begun:
To spell out a clear way by which to characterize mean-
ing postulates for a specified theoretical language (This
is clearly Carnap’s intention in his [2.19]).

2.1.3 Correspondence Rules

In order to distinguish the character and function of the-
oretical terms from speculative metaphysical ones (e.g.,
unicorn), logical positivists sought for a connection of
theoretical to observational terms by giving an analysis
of the empirical nature of theoretical terms contrary to
that of metaphysical terms. This connection was formu-
lated in what we can call, following Achinstein [2.22],
the Thesis of Partial Interpretation, which is basically
the following: As indicated above, in the brief sketch of

the main features of the RV, the RV allows that a com-
plete empirical semantic interpretation in terms of di-
rectly observables is given to VO terms and to sentences
that belong to LO. However, no such interpretation is in-
tended for VT terms and consequently for sentences of
L containing them. It is TC as a whole that supplies the
empirical content of VT terms. Such terms receive a par-
tial observational meaning indirectly by being related to
sets of observation terms via correspondence rules. To
use one of Achinstein’s examples [2.22, p. 90]:

“it is in virtue of [a correspondence-rule] which
connects a sentence containing the theoretical term
electron to a sentence containing the observational
term spectral line that the former theoretical term
gains empirical meaning within the Bohr theory of
the atom”

Correspondence rules were initially introduced to
serve three functions in the RV:

1. To define theoretical terms.
2. To guarantee the cognitive significance of theoreti-

cal terms.
3. To specify the empirical procedures for applying

theory to phenomena.

In the initial stages of logical positivism it was
assumed that if observational terms were cognitively
significant, then theoretical terms were cognitively sig-
nificant if and only if they were explicitly defined in
terms of observational terms. The criteria of explicit
definition and cognitive significance were abandoned
once proponents of the RV became convinced that dis-
positional terms, which are cognitively significant, do
not admit of explicit definitions (Carnap [2.23, 24], also
Hempel [2.25, pp. 23–29], andHempel [2.5]). Consider,
for example, the dispositional term tearable (let us as-
sume all the necessary conditions for an object to be
torn apart hold), if we try to explicitly define it in terms
of observables we end up with something like this:

“An object x is tearable if and only if, if it is pulled
sharply apart at time t then it will tear at t (assuming
for simplicity that pulling and tearing occur simul-
taneously).”

The above definition could be rendered as 8x
.T.x/$8t.P.x; t/! Q.x; t///, where, T is the theoret-
ical term tearable, P is the observational term pulled
apart, and Q is the observational term tears. But this
does not correctly define the actual dispositional prop-
erty tearable, because the right-hand side of the bicon-
ditional will be true of objects that are never pulled
apart. As a result, some objects that are not tearable and
have never being pulled apart will by definition have the
property tearable.
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Because of this, Carnap [2.23, 24] proposed to re-
place the construal of correspondence rules as explicit
definitions, by reduction sentences that partially de-
termine the observational content of theoretical terms.
A reduction sentence defined the dispositional property
tearable as follows: 8x8t .P.x; t/! .Q.x; t/$ T.x///.
That is, (Carnap calls such sentences bilateral reduc-
tion sentences [2.23, 24]):

“If an object x is pulled-apart at time t, then it tears
at time t if and only if it is tearable.”

Unlike the explicit definition case, if a is a non-
tearable object that is never pulled apart then it is not
implied that T.a/ is true. What will be implied, in such
case, is that 8t .P.a; t/! .Q.a; t/$ T.a///, is true.
Thus the above shortcoming of explicit definitions is
avoided, because a reduction sentence does not com-
pletely define a disposition term. In fact, this is also
the reason why correspondence rules supply only par-
tial observational content, since many other reduction
sentences can be used to supply other empirical as-
pects of the term tearable, for example, being torn
by excessively strong shaking. Consequently, although
correspondence rules were initially meant to provide
explicit definitions and cognitive significance to VT

terms, these functions were abandoned and substituted
by reduction sentences and partial interpretation (A
detailed explication of the changes in the use of cor-
respondence rules through the development of the RV
can be found in [2.1]).

Therefore, in its most defensible version the RV
could be construed to assign the following functions to
correspondence rules: First, they specify empirical pro-
cedures for the application of theory to phenomena and
second, as a constitutive part of TC, they supply VT and
LT with partial interpretation. Partial interpretation in
the above sense is all the RV needs since, given its goal
of distinguishing theoretical from speculative meta-
physical terms, it only needs a way to link the VT terms
to the VO terms. The version of the RV that employs cor-
respondence rules for these two purposes motivated two
sorts of criticisms. The first concerns the idea that cor-
respondence rules provide partial interpretation to VT

terms, and the second concerns the function of corre-
spondence rules for providing theory application.

The thesis of partial interpretation came under at-
tack from Putnam [2.4] and Achinstein [2.3, 22]. The
structure of their arguments is similar. They both think
that partial interpretation is unclear and they attempt
to clarify the concept. They do so by suggesting plau-
sible explications for partial interpretation. Then they
show that for each plausible explication that each of
them suggests partial interpretation is either an incoher-
ent notion or inadequate for the needs of the RV. Thus,

they both conclude that any attempt to elucidate the
notion of partial interpretation is problematic and that
partial interpretation of VT terms cannot be adequately
explicated. For example, Putnam gives the following
plausible explications for partial interpretation:

1. To partially interpret VT terms is to specify a class
of intended models.

2. To partially interpret a term is to specify a veri-
fication–refutation procedure that applies only to
a proper subset of the extension of the term.

3. To partially interpret a formal language L is to inter-
pret only part of the language.

In similar spirit, Achinstein gives three other plau-
sible explications. One of Putnam’s counterexamples
is that (1) above cannot meet its purpose because the
class of intended models, that is, the semantic struc-
tures or interpretations that satisfy TC and which are
so intended by scientists, is not well defined (A critical
assessment of these arguments can be found in [2.1]).

The other function of correspondence rules, that of
specifying empirical procedures for theory application
to phenomena, also came under criticism. Suppe [2.1,
pp. 102–109] argued that the account of correspondence
rules inherent in the RV is inadequate for understanding
actual science on the following three grounds:

1. They are mistakenly viewed as components of the
theory rather than as auxiliary hypotheses.

2. The sorts of connections (e.g., explanatory causal
chains) that hold between theories and phenomena
are inadequately captured.

3. They oversimplify the ways in which theories are
applied to phenomena.

The first argument is that the RV considers TC as
postulates of the theory. Hence C is assumed to be an
integral part of the theory. But, if a new experimental
procedure is discovered it would have to be incorpo-
rated into C, and the result would be a new set of rules
C0 that subsequently leads to a new theory TC0. But ob-
viously the theory does not undergo any change. When
new experimental procedures are discovered we only
improve our knowledge of how to apply theory to phe-
nomena. So we must think of correspondence rules as
auxiliary hypotheses distinct from theory.

The second argument is based upon Schaffner’s
[2.26] observation that there is a way in which theo-
ries are applied to phenomena, which is not captured
by the RV’s account of correspondence rules. This is
the case when various auxiliary theories (independent
of T) are used to describe a causal sequence, which
obtains between the states described by T and the obser-
vation reports. These causal sequences are descriptions
of the mechanisms involved within physical systems to
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cause the measurement apparatus to behave as it does.
Thus, they supplement theoretical explanations of the
observed behavior of the apparatus by linking the the-
ory to the observation reports via a causal story. For
example, such auxiliary hypotheses are used to estab-
lish a causal link between the motion of an electron (VT

term) and the spectral line (VO term) in a spectrom-
eter photograph. Schaffner’s point is that the relation
between theory and observation reports is frequently
achieved by the use of these auxiliary hypotheses that
establish explanations of the behavior of physical sys-
tems via causal mechanisms. Without recognizing the
use of these auxiliaries the RV may only describe a type
of theory application whereby theoretical states are just
correlated to observational states. If these kinds of aux-
iliaries were to be viewed as part of C then it is best
that C is dissociated from the core theory and is re-
garded as a separate set of auxiliary hypotheses required
for establishing the relation between theory and experi-
ment, because such auxiliaries are obviously not theory
driven, but if they are not to be considered part ofC then
C does not adequately explain the theory–experiment
relation.

Finally, the third argument is based on Sup-
pes’ [2.27, 28] analysis of the complications involved in
relating theoretical predictions to observation reports.
Suppes observes that in order to reach the point where
the two can meaningfully be compared, several episte-
mologically important modifications must take place on
the side of the observation report. For example, Suppes
claims, on the side of theory we typically have pre-
dictions derived from continuous functions, and on the
side of an observation report we have a set of discrete
data. The two can only be compared after the obser-
vation report is modified accordingly. Similarly, the
theory’s predictions may be based on the assumption
that certain idealizing conditions hold, for example, no
friction. Assuming that in the actual experiment these
conditions did not hold, it would mean that to achieve
a reasonable comparison between theory and experi-
ment the observational data will have to be converted
into a corresponding set that reflects the result of an
ideal experiment. In other words, the actual observa-
tional data must be converted into what they would have
been had the idealizing conditions obtained. Accord-
ing to Suppes, these sorts of conversion are obtained by
employing appropriate theories of data. So, frequently,
there will not be a direct comparison between theory
and observation, but a comparison between theory and
observation-altered-by-theory-of-data.

By further developing Suppes’ analysis, Suppe [2.8]
argues that because of its reliance on the observation–
theory distinction, the RV employs correspondence
rules in such a way as to blend together unrelated as-

pects of the scientific enterprise. Such aspects are the
design of experiments, the interpretation of theories, the
various calibration procedures, the employment of re-
sults and procedures of related branches of science, etc.
All these unrelated aspects are compounded into the
correspondence rules. Contrary to the implications of
the RV, Suppe claims, in applying a theory to phenom-
ena we do not have any direct link between theoretical
terms and observational terms. In a scientific experi-
ment we collect data about the phenomena, and often
enough the process of collecting the data involves rather
sophisticated bodies of theory. Experimental design and
control, instrumentation, and reliability checks are nec-
essary for the collection of data. Moreover, sometimes
generally accepted laws or theories are also employed
in collecting these data. All these features of exper-
imentation and data collection are then employed in
ways as to structure the data into forms (which Suppe
calls, hard data) that allow meaningful comparison
to theoretical predictions. In fact, theory application
according to Suppe involves contrasting theoretical pre-
dictions to hard data, and not to something directly
observed [2.8, p. 11]:

“Accordingly, the correspondence rules for a theory
should not correlate direct-observation statements
with theoretical statements, but rather should cor-
relate hard data with theoretical statements.”

In a nutshell, although both Suppes’ and Suppe’s
arguments do not establish with clarity how the theory–
experiment relation is achieved they do make the
following point: Actual scientific practice, and in par-
ticular theory–application, is far more complex than the
description given by the RV’s account of correspon-
dence rules.

2.1.4 The Cosmetic Role
of Models According to the RV

The objection that the RV obscures several epistemo-
logically important features of scientific theories is
implicitly present in all versions of the SV of theories.
Suppe, however, brings this out explicitly in the form
of a criticism (Suppe [2.1, 29, 30]). To clarify the sort
of criticism presented by Suppe, we need to make use
of some elements of the alternative picture of scientific
theories given by the SV, which we shall explore in de-
tail in Sect. 2.2.

The reasoning behind Suppe’s argument is the fol-
lowing. Science, he claims, has managed so far to go
about its business without involving the observation–
theory distinction and all the complexities that it gives
rise to. Since, he suggests, the distinction is not required
by science, it is important to ask not only whether an
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analysis of scientific theories that employs the distinc-
tion is adequate or not, that is, the issue on which (as
we have seen so far) many of the criticisms of the RV
have focused, but whether or not the observation–theory
distinction which leads to the notion of correspondence
rules subsequently steers toward obscuring epistemo-
logical aspects of scientific theorizing.

The sciences, he argues, do not deal with all the
detailed features of phenomena and not with phenom-
ena in all their complexity. Rather they isolate a certain
number of physical parameters by abstraction and ide-
alization and use these parameters to characterize phys-
ical systems (Suppe’s terminology is idiosyncratic, he
uses the term physical system to refer to the abstract
entity that an idealized model of the theory represents
and not to the actual target physical system), which
are highly abstract and idealized replicas of phenom-
ena. A classical mechanical description of the earth–sun
system of our solar system, would not deal with the ac-
tual system, but with a physical system in which some
relevant parameters are abstracted (e.g., mass, displace-
ment, velocity) from the complex features of the actual
system. And in which some other parameters are ig-
nored, for example, the intensity of illumination by the
sun, the presence of electromagnetic fields, the presence
of organic life. In addition, these abstracted parameters
are not used in their full complexity to characterize the
physical system. Indeed, the description would idealize
the physical system by ignoring certain factors or fea-
tures of the actual system that may plausibly be causally
relevant to the actual system. For instance, it may as-
sume that the planets are point masses, or that their
gravitational fields are uniform, or that there are no dis-
turbances to the system by external factors and that the
system is in a vacuum. What scientific theories do is
attempt to characterize the behavior of such physical
systems not the behavior of directly observable phe-
nomena.

Although this is admittedly a rough sketch of
Suppe’s view, it is not hard to see that the aim of the
argument is to lead to the conclusion that the directly
observable phenomena are connected to a scientific
theory via the physical system. That is to say, (if we put
together this idea with the one presented at the end of
Sect. 2.1.3 above) the connection between the theory
and the phenomena, according to Suppe, requires an
analysis of theories and of theory–application that
involves a two-stage move. The first move involves
the connection between raw phenomena and the hard
data about the particular target system in question.
The second move involves the connection between
the physical system that represents the hard data and
the theoretical postulates of the theory. According
to Suppe’s understanding of the theory–experiment

relation, the physical system plays the intermediate role
between phenomena and theory and this role, which
is operative in theory–application, is what needs to be
illuminated. The RV implies that the correspondence
rules “[. . . ] amalgamate together the two sorts of moves
[. . . ] so as to eliminate the physical system” [2.29,
p. 16], thus obscuring this important epistemological
feature of scientific theorizing.

So, according to Suppe, correspondence rules
must give way to this two-stage move, if we are to
identify and elucidate the epistemic features of physical
systems. Suppe’s suggestion is that the only way to
accommodate physical systems into our understanding
of how theories relate to phenomena is to give models
of the theory their representational status. The repre-
sentational means of the RV are linguistic entities, for
example, sentences. Models, within the RV, are denied
any representational function. They are conceived
exclusively as interpretative devices of the formal
calculus, that is, as structures that satisfy subsets of
sentences of the theory. This reduces models to meta-
mathematical entities that are employed in order to
make intelligible the abstract calculus, which amounts
to treating them as more or less cosmetic aspects of sci-
ence. But this understanding of the role of models leads
to the incapacity of the RV to elucidate the epistemic
features of physical systems, and thus obscures – what
Suppe considers to be – epistemologically important
features of scientific theorizing.

2.1.5 Hempel’s Provisos Argument

In one of his last writings, Hempel [2.31] raises
a problem that suggests a flaw in interpreting the link
between empirical theories and experimental reports
as mere deduction. Assuming that a theory is a formal
axiomatic system consisting of T and C, as we did
so far, consider Hempel’s example. If we try to apply
the theory of magnetism for a simple case we are
faced with the following inferential situation. From
the observational sentence b is a metal bar to which
iron filings are clinging (SO1), by means of a suitable
correspondence rule we infer the theoretical sentence
b is a magnet (ST1). Then by using the theoretical
postulates in T , we infer if b is broken into two bars,
then both are magnets and their poles will attract or
repel each other (ST2). Finally using further correspon-
dence rules we derive the observational sentence if b is
broken into two shorter bars and these are suspended,
by long thin threads, close to each other at the same
distance from the ground, they will orient themselves
so as to fall into a straight line (SO2) ([2.31, p. 20]).
If the inferential structure is assumed to be deductive
then the above structure can be read as follows: SO1 in
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combination with the theory deductively implies SO2.
Hempel concludes that this deductivist construal faces
a difficulty, which he calls the problem of provisos.

To clarify the problem of provisos, we must look
into the third inferential step from ST2 to SO2. What is
necessary here is for the theory of magnetism to pro-
vide correspondence rules that would turn this step into
a deductive inference. The theory however, as Hempel
points out, clearly does not do this. In fact, the the-
ory allows for the possibility that the magnets orient
themselves in a way other than a straight line, for ex-
ample, if an external magnetic field of suitable strength
and direction is present. This leads to recognizing that
the third inferential step presupposes the additional as-
sumption that there are no disturbing influences to the
system of concern. Hempel uses the term provisos,
“[. . . ] to refer to assumptions [of this kind] [. . . ], which
are essential, but generally unstated, presuppositions of
theoretical inferences” [2.31, p. 23]. Therefore, provi-
sos are presupposed in the application of a theory to
phenomena (The problem we saw in Sect. 2.1.3 which
Suppes raises, namely that in science theoretical predic-
tions are not confronted with raw observation reports
but with observation-altered-by-theory-of-data reports,
neighbors this problem but it is not the same. Hempel’s
problem of provisos concerns whether it is possible to
deductively link theory to observational statements no
matter how the latter are constructed).

What is the character of provisos? Hempel suggests
we may view provisos as assumptions of completeness.
For example, in a theoretical inference from a sentence
S1 to another S2, a proviso is required that asserts that in
a given case “[. . . ] no factors other than those specified
in S1 are present that could affect the event described by
S2” [2.31, p. 29]. As, for example, is the case in the ap-
plication of the Newtonian theory to a two-body system,
where it is presupposed that their mutual gravitational
attraction are the only forces the system is subjected to.
It is clear that [2.31, p. 26]:

“[. . . ] a proviso as here understood is not a clause
that can be attached to a theory as a whole and
vouchsafe its deductive potency by asserting that
in all particular situations to which the theory is
applied, disturbing factors are absent. Rather, a pro-
viso has to be conceived as a clause that pertains
to some particular application of a given theory and
asserts that in the case at hand, no effective factors
are present other than those explicitly taken into ac-
count.”

Thus, if a theory is conceived as a deductively
closed set of statements and its axioms conceived as
empirical universal generalizations, as the RV purports,
then to apply theory to phenomena, that is, to de-

ductively link theoretical to observational statements,
provisos are required. However, in many theory ap-
plications there would be an indefinitely large number
of provisos, thus trivializing the concept of scientific
laws understood as empirical universal generalizations.
In other cases, some provisos would not even be ex-
pressible in the language of the theory, thus making the
deductive step impossible. Hempel’s challenge is that
theory–applications presuppose provisos and this does
not cohere with the view that theory relates to obser-
vation sentences deductively (For an interesting discus-
sion of Hempel’s problem of provisos, see [2.32–35]).

2.1.6 Theory Consistency
and Meaning Invariance

Feyerabend criticized the logical positivist conception
of scientific theories on the ground that it imposes on
them a meaning invariance condition and a consis-
tency condition. By the consistency condition he meant
that [2.36, p. 164]

“[. . . ] only such theories are [. . . ] admissible in
a given domain which either contain the theories
already used in this domain, or which are at least
consistent with them inside the domain.”

By the condition of meaning invariance he meant
that [2.36, p. 164]:

“[. . . ] meanings will have to be invariant with re-
spect to scientific progress; that is, all future the-
ories will have to be framed in such a manner that
their use in explanations [or reductions] does not af-
fect what is said by the theories, or factual reports
to be explained”

Feyerabend’s criticisms are not aimed directly at the
RV, but rather at two other claims of logical positivism
that are intimately connected to the RV, namely the the-
ses of the development of theories by reduction and the
covering law model of scientific explanation.

A brief digression, in order to look into the afore-
mentioned theses, would be helpful. The development
of theories by reduction involves the reduction of one
theory (secondary) into a second more inclusive theory
(primary). In such developments, the former theorymay
employ [2.37, p. 342]

“[. . . ] in its formulations [. . . ] a number of distinc-
tive descriptive predicates that are not included in
the basic theoretical terms or in the associated rules
of correspondence of the primary [theory] [. . . ].”

That is to say, the VT terms of the secondary the-
ory are not necessarily all included in the theoretical
vocabulary of the primary theory. Nagel builds up his
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case based on the example of the reduction of ther-
modynamics to statistical mechanics. There are several
requirements that have to be satisfied for theory reduc-
tion to take place, two of which are: (1) the VT terms
for both theories involved in the reduction must have
unambiguously fixed meanings by codified rules of us-
age or by established procedures appropriate to each
discipline, for example, theoretical postulates or corre-
spondence rules. (2) for every VT term in the secondary
theory that is absent from the theoretical vocabulary
of the primary theory, assumptions must be introduced
that postulate suitable relations between these terms and
corresponding theoretical terms in the primary theory.
(See Nagel [2.37, pp. 345–358]. In fact Nagel presents
a larger set of conditions that have to hold in order
for reduction to take place [2.37, pp. 336–397], but
these are the only two relevant to Feyerabend’s argu-
ments).

The covering law model of scientific explanation
is, in a nutshell, explanation in terms of a deduc-
tively valid argument. The sentence to be explained
(explanandum) is a logical consequence of a set of law-
premises together with a set of premises consisting of
initial conditions or other particular facts involved (ex-
planans). For the special case when the explanandum
is a scientific theory, T 0, the covering law model can
be formulated as follows: A theory T explains T 0 if and
only if T together with initial conditions constitute a de-
ductively valid inference with consequence T 0. In other
words, if T 0 is derivable from T together with state-
ments of particular facts involved then T 0 is explained
by T . It seems that reduction and explanation of theo-
ries go hand in hand, that is, if T 0 is reduced to T , then
T explains T 0 and conversely.

Feyerabend points out that Nagel’s two assump-
tions – (1) and (2) above – for theory reduction re-
spectively impose a condition of meaning invariance
and a consistency condition to scientific progress. The
thesis of development of theories by reduction con-
demns science to restrict itself to theories that are
mutually consistent. But the consistency condition re-
quires that terms in the admissible theories for a domain
must be used with the same meanings. Similarly, it can
be shown that the covering law model of explanation
also imposes these two conditions. In fact, the con-
sistency condition follows from the requirement that
the explanandum must be a logical consequence of the
explanans, and since the meanings of the terms and
statements in a logically valid argument must remain
constant, an obvious demand for explanation – imposed

by the covering law model – is that meanings must
be invariant. Feyerabend objects to the meaning invari-
ance and the consistency conditions and argues his case
inductively by drawing from historical examples of the-
ory change. For example, the concept of mass does not
have the same meaning in relativity theory as it does
in classical mechanics. Relativistic mass is a relational
concept between an object and its velocity, whereas
in classical mechanics mass is a monadic property of
an object. Similarly, Galileo’s law asserts that acceler-
ation due to gravity is constant, but if Newton’s law
of gravitation is applied to the surface of the earth it
yields a variable acceleration due to gravity. Hence,
Galileo’s law cannot be derived from Newton’s law.
By such examples, he attempts to undermine Nagel’s
assumptions (1) and (2) above and establish that nei-
ther meaning invariance nor the related notion of theory
consistency characterize actual science and scientific
progress (see Feyerabend [2.36, 38–40]. Numerous au-
thors have criticized Feyerabend’s views. For instance,
objections to his views have been raised based on his
idiosyncratic analysis of meaning, on which his argu-
ments rely. His views are hence not presented here as
conclusive criticisms of the RV; but only to highlight
that they cast doubt on the adequacy of the theses of
theory development by reduction and the covering law
model of explanation).

2.1.7 General Remark on the Received View

The RV is intended as an explicative and not a de-
scriptive view of scientific theories. We have seen that
even as such it is vulnerable to a great deal of criti-
cism. One way or another, all these criticisms rely on
one weakness of the RV: Its inability to clearly spell
out the nature of theoretical terms (and how they ac-
quire their meaning) and its inability to specify how
sentences consisting of such terms relate to experimen-
tal reports. This is a weakness that has been understood
by the RV’s critics to stem from the former’s focus on
syntax. By shifting attention away from the representa-
tional function of models and attempting to characterize
theory structure in syntactic terms, the RV makes itself
vulnerable to such objections. Despite all of the above
criticisms pointing to the difficulty in explicating how
theoretical terms relate to observation, I do not think
that any one of them is conclusive in the ultimate sense
of rebutting the RV. Nevertheless, the subsequent result
was that under the weight of all of these criticisms to-
gether the RV eventually made room for its successor.
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2.2 The Semantic View of Scientific Theories

The SV has for the last few decades been the standard-
bearer of the view that theories are families of models.
The slogan theories are families of models was meant
by the philosophers that originally put forward the SV
to stand for the claim that it is more suitable – for
understanding scientific theorizing – that the structure
of theory is identified with, or presented as, classes
of models. A logical consequence of identifying the-
ory structure with classes of models is that models
and modeling are turned into crucial components of
scientific theorizing. Indeed, this has been one of the
major contributions of the SV, since it unquestionably
assisted in putting models and modeling at the fore-
front of philosophical attention. However, identifying
theory structure with classes of models is not a logical
consequence of the thesis that models (and model-
ing) are important components of scientific theorizing.
Some philosophers who came to this conclusion have
since defended the view that although models are cru-
cial to scientific theorizing, the relation between theory
and models is much more complex than that of set-
theoretical inclusion. I shall proceed in this section by
articulating the major features of the SV; in the pro-
cess I shall try to clarify the notion of model inherent
in the view and also explain – what I consider to be –
the main difference among its proponents, and finally I
will briefly discuss the criticisms against it, which, nev-
ertheless, do not undermine the importance of models
in science.

Patrick Suppes was the first to attempt a model-
theoretic account of theory structure. He was one of
the major denouncers of the attempts by the logical
positivists to characterize theories as first-order cal-
culi supplemented by a set of correspondence rules.
(See [2.27, 28, 41–43]; much of the work developed in
these papers is included in [2.44]). His objections to
the RV led him on the one hand to suggest that in sci-
entific practice the theory–experiment relation is more
sophisticated than what is implicit in the RV and that
theories are not confronted with raw experimental data
(as we have seen in Sect. 2.1) but with, what has since
been dubbed, models of data. On the other hand, he
proposed that theories be construed as collections of
models. The models are possible realizations (in the
Tarskian sense) that satisfy sets of statements of theory,
and these models, according to Suppes, are entities of
the appropriate set-theoretical structure. Both of these
insights have been operative in shaping the SV.

Suppes urged against standard formalizations of sci-
entific theories. First, no substantive example of a sci-
entific theory is worked out in a formal calculus, and
second the [2.28, p. 57]

“[. . . ] very sketchiness [of standard formalizations]
makes it possible to omit both important properties
of theories and significant distinctions that may be
introduced between different theories.”

He opts for set-theoretical axiomatization as the
way by which to overcome the shortcomings of stan-
dard formalization. As mentioned by Gelfert, Chap. 1,
Suppe’s example of a set-theoretical axiomatization is
classical particle mechanics (CPM). Three axioms of
kinematics and four axioms of dynamics (explicitly
stated in Chap. 1 of this volume: The Ontology of Mod-
els) are articulated by the use of predicates that are
defined in terms of set theoretical notions. The struc-
ture } D hP;T; s;m; f ;gi can then be understood to
be a model of CPM if and only if it satisfies those
axioms [2.41, p. 294]. Such a structure is what logi-
cians would label a (semantic) model of the theory,
or more accurately a class of models. In general, the
model–theoretic notion of a structure, S, is that of an
entity consisting of a nonempty set of individuals, D,
and a set of relations defined upon the former, R, that
is, SD hD;Ri. The set D specifies the domain of the
structure and the set R specifies the relations that hold
between the individuals in D. (Note that as far as the
notion of a structure is concerned, it only matters how
many individuals are there and not what they are, and it
only matters that the relations in R hold between such
and such individuals of D and not what the relations
are. For more on this point and a detailed analysis of
the notion of structure Frigg and Nguyen, Chap. 3).

Models of data, according to Suppes, are possible
realizations of the experimental data. It is to models of
data that models of the theory are contrasted. The RV
would have it that the theoretical predictions have a di-
rect analogue in the observation statements. This view
however, is, according to Suppes, a distorting simplifi-
cation. As we have seen in Sect. 2.1.3, Suppes defends
the claim that by the use of theories of experimen-
tal design and other auxiliary theories, the raw data
are regimented into a structural form that bears a re-
lation to the models of the theory. To structure the data,
as we saw earlier, various influencing factors that the
theory does not account for, but are known to influ-
ence the experimental data, must be accommodated by
an appropriate conversion of the data into canonical
form. This regimentation results in a finished product
that Suppes dubbed models of data, which are struc-
tures that could reasonably be contrasted to the models
of the theory. Suppes’ picture of science as an enter-
prise of theory construction and empirical testing of
theories involves establishing a hierarchy of models,
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roughly consisting of the general categories of mod-
els of the theory and models of the data. Furthermore,
since the theory–experiment relation is construed as no
more than a comparison (i. e., a mapping) of mathe-
matical structures, he invokes the mathematical notion
of isomorphism of structure to account for the link
between theory and experiment. (An isomorphism be-
tween structures U and V exists, if there is a function
that maps each element of U onto each element of V).
Hence, Suppes can be read as urging the thesis that
defining the models of the theory and checking for
isomorphism with models of data, is a rational recon-
struction that does more justice to actual science than
the RV does.

The backbone of Suppes’ account is the sharp dis-
tinction between models of theory and models of data.
In his view, the traditional syntactic account of the re-
lation between theory and evidence, which could be
captured by the schema: .T&A/! E (where, T stands
for theory, A for auxiliaries, E for empirical evidence),
is replaced by theses (1), (2), and (3) below:

1. MT � TS, where MT stands for model of the theory
TS for the theory structure, and � for the relation of
inclusion

2. .A&E&D/ 7!MD, where MD stands for model of
data, A for auxiliary theories, E for theories of ex-
perimental design etc.,D for raw empirical data, and
7! for . . . used in the construction of . . .

3. MT �MD, where � stands for mapping of the ele-
ments and relations of one structure onto the other.

MT � TS expresses Suppes’ view that by defining
a theory structure a class of models is laid down for the
representation of physical systems. .A&E&D/ 7!MD

is meant to show how Suppes distances himself from
past conceptions of the theory–experiment relation, by
claiming that theories are not directly confronted with
raw experimental data (collected from the target physi-
cal systems) but rather that the latter are used, together
with much of the rest of the scientific inventory, in the
construction of data structures, MD. These data struc-
tures are then contrasted to a theoretical model, and the
theory–experiment relation consists in an isomorphism,
or more generally in a mapping of a data onto a theo-
retical structure, that is, MT �MD. The proponents of
the SV would, I believe, concur to the above three gen-
eral theses. Furthermore, they would concur with two of
the theses’ corollaries: that scientific representation of
phenomena can be explicated exclusively by mapping
of structures, and that all scientific models constructed
within the framework of a particular scientific theory
are united under a common mathematical or relational
structure. We shall look into these two contentions of

the SV toward the end of this section. For now, let me
turn our attention to some putative differences between
the various proponents of the SV.

Despite agreeing about focusing on the mathemat-
ical structure of theories for giving a unitary account
of models, it is not hard to notice in the relevant liter-
ature that different proponents of the SV have spelled
out the details of thesis (1) in different ways. This is
because different proponents of the SV have chosen dif-
ferent mathematical entities with which to characterize
theory structure. As we saw above, Suppes chooses set
theoretical predicates a choice that seems to be shared
by da Costa and French [2.45, 46]. Van Fraassen [2.47]
on the other hand prefers state-spaces, and Suppe [2.30]
uses relational systems.

Let us, by way of example, briefly look into van
Fraassen’s state-space approach. The objects of concern
of scientific theories are physical systems. Typically,
mathematical models represent physical systems that
can generally be conceived as admitting of a certain
set of states. State-spaces are the mathematical spaces
the elements of which can be used to represent the
states of physical systems. It is a generic notion that
refers to what, for example, physicists would label as
phase space in classical mechanics or Hilbert space in
quantum mechanics. A simple example of a state-space
would be that of an n-particle system. In CPM, the state
of each particle at a given time is specified by its po-
sition qD .qx; qy; qz/ and momentum pD .px; py; pz/
vectors. Hence the state-space of an n-particle system
would be a Euclidean 6n-dimensional space, whose
points are the 6n-tuples of real numbers

hq1x; q1y; q1z; : : : ; qnx; qny; qnz;
p1x; p1y; p1z; : : : ; pnx; pny; pnzi :

More generally, a state-space is the collection of mathe-
matical entities such as, vectors, functions, or numbers,
which is used to specify the set of possible states for
a particular physical system. Amodel, in van Fraassen’s
characterization of theory structure, is a particular se-
quence of states of the state-space over time, that is, the
state of the modeled physical system evolves over time
according to the particular sequence of states admitted
by the model. State-spaces unite clusters of models of
a theory, and they can be used to single out the class of
intended models just as set-theoretical predicates would
in Suppes’ approach. The presentation of a scientific
theory, according to van Fraassen, consists of a descrip-
tion of a class of state-space types. As van Fraassen
explains [2.47, p. 44]:

“[w]henever certain parameters are left unspecified
in the description of a structure, it would be more
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accurate to say [. . . ] that we described a structure
type.”

The Bohr model of the atom, for example, does not
refer to a single structure, but to a structure type. Once
the necessary characteristics are specified, it gives rise
to a structure for the hydrogen atom, a structure for the
helium atom, and so forth.

The different choices of different authors on how
theory structure is characterized, however, belong to the
realm of personal preference and do not introduce any
significant differences on the substance of thesis (1)
of the SV, which is that all models of the theory are
united under an all-inclusive theory structure. So, ir-
respective of the particular means used to characterize
theory structure, the SV construes models as structures
(or structure types) and theories as collections of such
structures. Neither have disagreements been voiced re-
garding thesis (2). On the contrary, there seems to be
a consensus among adherents of the SV that models of
theory are confronted with models of data and not the
direct result of an experimental setup (Not much work
has been done to convincingly analyze particular sci-
entific examples and to show the details of the use of
models of data in science; rather, adherents of the SV
repeatedly use the notion with reference to something
very general with unclear applications in actual scien-
tific contexts).

2.2.1 On the Notion of Model in the SV

An obvious objection to thesis (1) would be that a stan-
dard formalization could be used to express the theory
and subsequently define the class of semantic mod-
els metamathematically, as the class of structures that
satisfy the sentences of the theory, despite Suppes sug-
gestion that such a procedure would be unnecessarily
complex and tedious.

In fact, proponents of the SV have often encouraged
this objection. Van Fraassen and Suppe are notable
examples as the following quotations suggest [2.48,
p. 326]:

“There are natural interrelations between the two
approaches [i. e., the RV and the SV]: An axiomatic
theory may be characterized by the class of interpre-
tations which satisfy it, and an interpretation may
be characterized by the set of sentences which it
satisfies; though in neither case is the characteriza-
tion unique. These interrelations [. . . ] would make
implausible any claim of philosophical superiority
for either approach. But the questions asked and
methods used are different, and with respect to fruit-
fulness and insight they may not be on a par with
specific contexts or for special purposes.”

Suppe [2.30, p. 82]:

“This suggests that theories be construed as pro-
pounded abstract structures serving as models for
sets of interpreted sentences that constitute the
linguistic formulations. These structures are meta-
mathematical models of their linguistic formula-
tions, where the same structure may be the model
for a number of different, and possibly nonequiva-
lent, sets of sentences or linguistic formulations of
the theory.”

From such remarks, one is justifiably led to be-
lieve that propounding a theory as a class of models
directly defined, without recourse to its syntax, only
aims at convenience in avoiding the hustle of construct-
ing a standard formalization, and at easier adaptability
of our reconstruction with common scientific practices.
Epigrammatically, the difference – between the SV and
the RV – would then be methodological and heuristic.
Reasons such as this have led some authors to ques-
tion the logical difference between defining the class of
models directly as opposed to metamathematically.

Examples are Friedman and Worrall who in their
separate reviews of van Fraassen [2.47] ask whether
the class of models that constitutes the theory, accord-
ing to the proponents of the SV, is to be identified with
an elementary class, that is, a class that contains all
the models (structures) that satisfy a first-order theory.
They both notice that not only does van Fraassen and
other proponents of the SV offer no reason to oppose
such a supposition, but also they even encourage it (as
in the above quotations). But if that is the case [2.49,
p. 276]:

“[t]hen the completeness theorem immediately
yields the equivalence of van Fraassen’s account
and the traditional syntactic account [i. e., that of the
RV].”

In other words [2.50, p. 71]:

“So far as logic is concerned, syntax and semantics
go hand-in-hand – to every consistent set of first-
order sentences there corresponds a nonempty set
of models, and to every normal (elementary) set of
models there corresponds a consistent set of first-
order sentences.”

If we assume (following Friedman andWorrall) that
the proponents of the SV are referring to the elemen-
tary class of models then the preceding argument is
sound. The SV, in agreement with the logical positivists,
retains formal methods as the primary tool for philo-
sophical analysis of science. The only new elements of
its own would be the suggestions that first it is more
convenient that rather than developing these methods
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using proof–theory we should instead use formal se-
mantics (model-theory), and second we should assign
to models (i. e., the semantic interpretations of sets of
sentences) a representational capacity.

Van Fraassen, however, resists the construal of the
class of models of the SV with an elementary class (See
van Fraassen [2.51, pp. 301–303] and his [2.52]). Let
me rehearse his argument. The SV claims that to present
a theory is to define a class M of models. This is the
class of structures the theory makes available for mod-
eling its domain. For most scientific theories, the real
number continuumwould be included in this class. Now
his argument goes, if we are able to formalize what is
meant to be conveyed by M in some appropriate lan-
guage, then we will be left with a class N of models of
the language, that is, the class of models in which the
axioms and theorems of the language are satisfied. Our
hope is that every structure inM occurs in N. However,
the real number continuum is infinite and [2.52, p. 120]:

“[t]here is no elementary class of models of a denu-
merable first-order language each of which includes
the real numbers. As soon as we go from math-
ematics to metamathematics, we reach a level of
formalization where many mathematical distinc-
tions cannot be captured.”

Furthermore, “[t]he Löwenheim–Skolem theorems
[. . . ] tell us [. . . ] that N contains many structures
not isomorphic to any member of M” [2.51, p. 302].
Van Fraassen relies, here, on the following reasoning:
The Löwenheim–Skolem theorem tells us that all sat-
isfiable first-order theories that admit infinite models
will have models of all different infinite cardinalities.
Now models of different cardinality are nonisomor-
phic. Consequently, every theory that makes use of the
real number continuum will have models that are not
isomorphic to the intended models (i. e., nonstandard
interpretations) but which satisfy the axioms of the the-
ory. So van Fraassen is suggesting thatM is the intended
class of models, and since the limitative meta-theorems
tell us that it cannot be uniquely determined by any set
of first-order sentences we can only define it directly.
Here is his concluding remark [2.51, p. 302]:

“The set N contains [. . . ] [an] image M� of M,
namely, the set of thosemembers ofN which consist
of structures in M accompanied by interpretations
therein of the syntax. But, moreover, [. . . ]M� is not
an elementary class.”

Evidently, van Fraassen’s argument aims to estab-
lish that the directly defined class of models is not an
elementary class. It is hard, however, to see that defin-
ing the models of the theory directly without resort to
formal syntax yields only the intended models of theory

(i. e., excludes all nonstandardmodels), despite the pos-
sibility that one could see the prospect of the SV being
heuristically superior to the RV. (Of course, we must not
forget that this superiority would not necessarily be the
result of thesis (1) of the SV, but it could be the result of
its consequence of putting particular emphasis on the
significance of scientific models that, as noted earlier,
does not logically entail thesis (1)).

Let us, for the sake of argument, ignore the Fried-
man–Worrall argument. Now, according to the SV,
models of theory have a dual role. On the one hand,
they are devices by which phenomena are represented,
and on the other, they are structures that would sat-
isfy a formal calculus were the theory formalized. The
SV requires this dual role. First because the represen-
tational role of models is the way by which the SV
accounts for scientific representation without the use of
language; and second because the role of interpreting
a set of axioms ensures that a unitary account of mod-
els is given. Now, Thompson-Jones [2.53] notices that
the notion of model implicit in the SV is either that of
an interpretation of a set of sentences or a mathemat-
ical structure (the disjunction is of course inclusive).
He analyzes the two possible notions and argues that
the SV becomes more tenable if the notion of model
is only understood as that of a mathematical structure
that functions as a representation device. If that were
the case then the adherents of the SV could possi-
bly claim that defining the class of structures directly
indeed results in something distinct from the metamath-
ematical models of a formal syntax. Thompson-Jones’
suggestion, however, would give rise to new objections.
Here is one. It would give rise to the following ques-
tion: How could a theory be identified with a class of
models (i. e., mathematical structures united under an
all-inclusive theory structure) if the members of such
a class do not attain membership in the class because
they are interpretations of the same set of theory ax-
ioms? In other words, the proponents of the SV would
have to explain what it is that unites the mathematical
models other than the satisfaction relation they have to
the theoretical axioms. To my knowledge, proponents
of the SV have not offered an answer to this question.
If Thompson-Jones’ suggestion did indeed offer a plau-
sible way to overcome the Friedman–Worrall argument
then the SV would have to abandon the quest of giv-
ing a unitary account of models. Given the dual aim
of the SV, namely to give a unitary account of models
and to account for scientific representation by means of
structural relations, it seems that the legitimate notion
of model integral to this view must have these two-hard
to reconcile-roles; namely, to function both as an inter-
pretation of sets of sentences and as a representation of
phenomena. (Notice that this dual function of models is
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an aspect of all versions of the SV, independent of how
one chooses to characterize theory structure and of how
one chooses to interpret that structure).

2.2.2 The Difference Between
Various Versions of the SV

The main difference among the various versions of the
SV relates to two intertwined issues that relate to the-
sis (3), namely how the theory structure is construed
and how the theory–experiment mapping relation is
construed. To a first approximation we could divide the
different versions of the SV, from the perspective of
these two issues, into two sorts. Those in which par-
ticular emphasis is given to the presence of abstraction
and idealization in scientific theorizing for explicating
the theory–experiment (or model–experiment) relation,
and those in which the significance of this nature of sci-
entific theorizing is underrated.

Idealization and Abstraction Underrated
Van Fraassen (Suppes most probably could be placed
in this group too), for example, seems to be a clear case
of this sort. Here is how he encapsulates his conception
of scientific theories and of how theory relates to exper-
iment [2.47, p. 64]:

“To present a theory is to specify a family of struc-
tures, its models; and secondly, to specify certain
parts of those models (the empirical substructures)
as candidates for the direct representation of ob-
servable phenomena. The structures which can be
described in experimental and measurement reports
we can call appearances: The theory is empirically
adequate if it has some model such that all appear-
ances are isomorphic to empirical substructures of
that model.”

Appearances (which is van Fraassen’s term formod-
els of data) are relational structures of measurements of
observable aspects of the target physical system, for ex-
ample, relative distances and velocities. For example, in
the Newtonian description of the solar system, as van
Fraassen points out, the relative motions of the planets
“[. . . ] form relational structures defined by measuring
relative distances, time intervals, and angles of sepa-
ration” [2.47, p. 45]. Within the theoretical model for
this physical system, “[. . . ] we can define structures that
are meant to be exact reflections of those appearances
[. . . ]” [2.47, p. 45]. Van Fraassen calls these empirical
substructures. When a theory structure is defined each
of its models, which are candidates for the represen-
tation of phenomena, includes empirical substructures.
So within representational models we could specify
a division between observable/nonobservable features

(albeit this division is not drawn in linguistic terms),
and the empirical substructures of such models are as-
sumed to be isomorphic to the observable aspects of the
physical system. In other words, the theory structure
is interpreted as having distinctly divided observable
and nonobservable features, and the theory–experiment
relation is interpreted as being an isomorphic relation
between the data model and the observable parts of the
theoretical model. Now, the state-space is a class of
models, it thus includes – for CPM – many models in
which the world is a Newtonian mechanical system. In
fact, it seems that the state-space includes (unites) all
logically possible models, as the following dictum sug-
gests ([2.52, p. 111], [2.54, p. 226]):

“In one such model, nothing except the solar system
exists at all; in another the fixed stars also exist, and
in a third, the solar system exists and dolphins are
its only rational inhabitants.”

According to van Fraassen, the theory is empiri-
cally adequate if we can find a model of the theory
in which we can specify empirical substructures that
are isomorphic to the data model. The particular view
of scientific representation that resides within this idea
is this: A model represents its target if and only if it
is isomorphic to a data model constructed from mea-
surements of the target. Not much else seems to matter
for a representation relation to hold but the isomor-
phism condition. Many would argue, however, that such
a condition for the representation relation is too strong
to explicate how actual scientific models relate to ex-
perimental results and would object to this view on
the ground that for isomorphism to occur it would re-
quire that target physical systems occur under highly
idealized conditions or in isolated circumstances. (Ad-
mittedly, it would not be such a strong requirement
for models that would only describe observable as-
pects of the world. In such cases isomorphism could be
achieved, but at the expense of the model’s epistemic
significance. I do not think, for instance, that such mod-
els would be of much value to a science like Physics as,
more often than not, they would be useless in predicting
the future behavior of their targets).

Idealization and Abstraction Highlighted
In the second camp of the SV, we encounter several
varieties. One of these is Suppe [2.30], who interprets
theory structure and the theory–experiment relation
as follows. Theories characterize particular classes of
target systems. However, target systems are not charac-
terized in their full complexity, as already mentioned
in Sect. 2.1.4. Instead, Suppe’s understanding is that
certain parameters are abstracted and employed in this
characterization. In the case of CPM, these are the posi-
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tion and momentum vectors. These two parameters are
abstracted from all other characteristics that target sys-
tems may possess. Furthermore, once the factors, which
are assumed to influence the class of target systems
in the theory’s intended scope, have been abstracted
the characterization of physical systems (as mentioned
in Sect.2.1.4, physical systems in Suppe’s terminology
refer to the abstract entities that models of the the-
ory represent and not to the actual target systems) still
does not fully account for target systems. Physical sys-
tems are not concerned with the actual values of the
parameters the particulars possess, for example, actual
velocities, but with the values of these parameters under
certain conditions that obtain only within the physical
system itself. Thus in CPM, where the behavior of di-
mensionless point-masses are studied in isolation from
outside interactions, physical systems characterize this
behavior only by reference to the positions and mo-
menta of the point-masses at given times.

An example can serve to demonstrate Suppe’s idea
in bit more detail. The linear harmonic oscillator, that
is, a mathematical instrument, is expressed by the fol-
lowing equation of motion RxC .k=m/xD 0 , which is
the result of applying Newton’s second law to a linear
restoring force. The mathematical model is interpreted
(and thus characterizes a physical system) as follows:
Periodic oscillations are assumed to take place with re-
spect to time, x is the displacement of an oscillating
mass-point, and k and m are constant coefficients that
may be replaced by others. When the mathematical pa-
rameters in the above equation are linked to features
of a specific object, the equation can be used to model
for instance the torsion pendulum, that is, an elastic
rod connected to a disk that oscillates about an equi-
librium position. This sort of linking of mathematical
terms to features of objects could be understood to be
a manifestation of what Giere calls identification. Giere
introduces a useful distinction between interpretation
and identification [2.55, p. 75]:

“[. . . ] [Interpretation] is the linking of the mathe-
matical symbols with general terms, or concepts,
such as position[. . . ] [Identification] is the linking
of a mathematical symbol with some feature of
a specific object, such as the position of the moon.”

In the torsion pendulum model, x is identified with
the angle of twist, k with the torsion constant, and m
with the moment of inertia. By linking the mathematical
symbols of a model to features of a target systemwe can
reasonably assume, according to Suppe, that the model
could be associated with an actual system of the world;
the model characterizes, as Suppe would say in his own
jargon, “a causally possible physical system.”

However, even when a certain mathematical product
of theory is identified with a causally possible phys-
ical system, we still know that typically the situation
described by the physical system does not obtain. The
actual torsion pendulum apparatus is subject to a num-
ber of different factors (or may have a number of
different characteristics) that may or may not influence
the process of oscillation. Some influencing factors are
the amplitude of the angle of oscillation, the mass dis-
tribution of the rod and disc, the nonuniformity of the
gravitational field of the earth, the buoyancy of the rod
and disc, the resistance of the air and the stirring up of
the air due to the oscillations. In modeling the torsion
pendulum by means of the linear harmonic oscillator
the physical system is abstracted from factors assumed
to influence the oscillations in the same manner as from
those assumed not to. Therefore, the replicating rela-
tion between the physical system, P, and the target
system, S, which Suppe urges cannot be understood as
one of identity or isomorphism. Suppe is explicit about
this [2.30, p. 94]:

“The attributes in P determine a sequence of states
over time and thus indicate a possible behavior of S
[. . . ] Accordingly, P is a kind of replica of S; how-
ever, it need not replicate S in any straight-forward
manner. For the state of P at t does not indicate what
attributes the particulars in S possess at t; rather, it
indicates what attributes they would have at t were
the abstracted parameters the only ones influencing
the behavior of S and were certain idealized con-
ditions met. In order to see how P replicates S we
need to investigate these abstractive and idealizing
conditions holding between them.”

In summary, the replicating relation is counterfac-
tual: If the conditions assumed to hold for the descrip-
tion of the physical system were to hold for the target
system, then the target system would behave in the way
described by the physical system. The behavior of ac-
tual target systems, however, may be subject to other
unselected parameters or other conditions, for which the
theory does not account.

The divergence of Suppe’s view from that of van
Fraassen is one based primarily on the representation
relation of theory to phenomena. Suppe understands the
theory structure as being a highly abstract and idealized
representation of the complexities of the real world.
Van Fraassen disregards this because he is concerned
with the observable aspects of theories and assumes that
these can, to a high degree of accuracy, be captured by
experiments. Thus van Fraassen regards theories as con-
taining empirical substructures that stand in isomorphic
relations to the observable aspects of the world. Suppe’s
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understanding of theory structure, however, points to
a significant drawback present in van Fraassen’s view:
How can isomorphism obtain between a data model and
an empirical substructure of the model, given that the
model is abstract and idealized? Suppe’s difference with
van Fraassen’s view of the representation relation and
of the epistemic inferences that can be drawn from it is
this, if indeed it is the case that isomorphism obtains be-
tween a data model and an empirical substructure, then
it is so for either of two reasons: (1) the experiment is
highly idealized, or (2) the data model is converted to
what the measurements would have been if the influ-
ences that are not accounted by the theory did not have
any effect on the experimental setup. This is a signif-
icantly different claim from what van Fraassen would
urge, to wit that the world or some part of it is isomor-
phic to the model. According to Suppe’s understanding
of theory structure, no part of the world is or can be iso-
morphic to a model of the theory, because abstraction
and idealization are involved in scientific theorizing.

Geire [2.55] is another example of a version of the
SV that places the emphasis on abstraction and ide-
alization. Following Suppes and van Fraassen, Giere
understands theories as classes of models. He does not
have any special preference about the mathematical en-
tities by which theory structure is characterized, but
he is interested in looking at the characteristics of ac-
tual science and how these could be captured by the
SV. This leads him to a similar claim as Suppe. He
claims that although he does not see any logical rea-
son why a real target system could not be isomorphic
to a model, nevertheless for the examples of models
found in mechanics texts, typically, no claim of isomor-
phism is made, indeed “[. . . ] the texts often explicitly
note respects in which the model fails to be isomor-
phic to the real system” [2.55, p. 80]. He attributes
this to the abstract and idealized nature of models of
the theory. His solution is to substitute the strict crite-
rion of isomorphism, as a way by which to explicate
the theory–experiment relation, with that of similarity
in relevant respects and degrees between the model and
its target.

Finally, there is another example of a version of
the SV that also gives attention to idealization and ab-
straction, namely the version advocated by da Costa
and French in [2.45, 46, 56]. They do this indirectly by
interpreting theories as partial structures, that is, struc-
tures consisting of a domain of individuals and a set of
partial relations defined on the domain, where a partial
relation is one that is not defined for all the n-tuples
of individuals of the domain for which it presumably
holds. If models of theory are interpreted in this man-
ner and if it is assumed that models of data are also
partial structures, then the theory–experiment relation

is explicated by da Costa and French [2.46] as a par-
tial isomorphism. A partial isomorphism between two
partial structures U and V exists when a partial sub-
structure of U is isomorphic to a partial substructure
of V. In other words, partial isomorphism exists when
some elements of the set of relations in U are mapped
onto elements of the set of relations in V. If a model
of theory is partially isomorphic to a data model then,
da Costa and French claim, the model is partially true.
The notion of partial truth is meant to convey a prag-
matic notion of truth, which plausibly could avoid the
problems of correspondence or complete truth, and cap-
ture the commonplace idea that theories (or models) are
incomplete or imperfect or abstract or idealized descrip-
tions of target systems.

In conclusion, if we could speak of different ver-
sions of the SV and not just different formulations of
the same idea, if, in other words, the proposed versions
of the semantic conception of theories can be differen-
tiated in any significant way amongst them, it is on the
basis of how thesis (3) is conceived: There are those
that understand the representation relation, MT �MD,
as a strict isomorphic relation, and those that construe
it more liberally, for example, as a similarity relation.
In particular, van Fraassen prefers an isomorphic re-
lation between theory and experiment, whereas Suppe
and others understand theories as being abstract and
idealized representations of phenomena. It would seem
therefore that particular criticisms would not necessar-
ily target both versions. This has not been the case
however, as we shall examine in the next two subsec-
tions. Critics of the SV have either targeted theses (1)
and (2) and the unitary account of models implicit in the
SV, or thesis (3) and the representation relation however
the latter is conceived. The arguments against the uni-
tary account of scientific models, which obviously aim
indiscriminately at all versions of the SV, will be ex-
plored in Sect.2.2.4. The arguments against the nature
of the representation relation implied by the SV, which
shall be explored in Sect.2.2.3, if properly adapted af-
fect both versions of the SV.

2.2.3 Scientific Representation
Does not Reduce
to a Mapping of Structures

Suarez [2.57] presents five arguments against the idea
that scientific representation can be explicated by ap-
pealing to a structural relation (like isomorphism or
similarity) that may hold between the representational
device and the represented target. (Suarez [2.57] also
develops his arguments for other suggested interpreta-
tions of theses (3), such as partial isomorphism). These
arguments, which are summarized below, imply that
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the representational capacity of scientific models can-
not derive from having a structural relation with its
target. Suarez’s first argument is that in science many
disparate things act as representational devices, for ex-
ample, a mathematical equation, or a Feynman diagram,
or an architect’s model of a building, or the double helix
macro-model of the DNA molecule. Neither isomor-
phism nor similarity can be applied to such disparate
representational devices in order to explicate their rep-
resentational function. A similar point is also made by
Downes [2.58], who by also exploring some examples
of scientific models, argues that models in science re-
late to their target systems in various ways, and that
attempts to explicate this relation by appeal to isomor-
phism or similarity does little to serve the purpose of
understanding the theory–experiment relation.

The second argument concerns the logical proper-
ties of representation vis-a-vis those of isomorphism
and similarity. Suarez explains that representation is
nonsymmetric, nonreflexive and nontransitive. If scien-
tific representation is a type of representation then any
attempt to explicate scientific representation cannot im-
ply different logical features from representation. But
appeal to a structural relation does not accomplish this,
because “[. . . ] similarity is reflexive and symmetric,
and isomorphism is reflexive, symmetric and transitive”
[2.55, p. 233].

His third argument is that any explication of rep-
resentation must allow for misrepresentation or inac-
curate representation. Misrepresentation, he explains,
occurs either when the target of a representation is mis-
taken or when a representation is inaccurate because it
is either incomplete or idealized. Neither isomorphism
nor similarity allows for the first kind of misrepresen-
tation and isomorphism does not allow for the second
kind. Although, similarity does account for the second
kind of representation, Suarez argues, it does so in a re-
strictive sense. That is, if we assume that an incomplete
representation is given according to theory X then sim-
ilarity does account for misrepresentation. However, if
a complete representation were given according to the-
ory X (i. e., if we have similarity in all relevant respects
that X dictates) but the predictions of this representation
still diverge from measurements of the values of the tar-
get’s attributes then similarity does not account for this
kind of misrepresentation.

The fourth argument is that neither isomorphism
nor similarity is necessary for representation. Our in-
tuitions about the notion of representation allow us to
accept the representational device derived from the-
ory X as a representation of its target, even though we
may know that isomorphism or similarity does not ob-
tain because, for example, an alternative theory Y not
only gives us better predictions about the target but

also tells us why X fails to produce representational
devices that are isomorphic or similar to their targets.
A different argument but with the same conclusion is
given by Portides [2.59], who argues that isomorphism,
or other forms of structural mapping, is not necessary
for representation because it is possible to explicate the
representational function of some successful quantum
mechanical models, which are not isomorphic to their
targets. Suarez’s final argument is that neither isomor-
phism nor similarity is sufficient for representation. In
other words, even though there may not be a represen-
tation relation between A and B, A and B may, however,
be isomorphic or similar.

Aiming at the same feature of the SV as Suarez,
Frigg [2.60] reiterates some of the arguments above
and gives further reasons to fortify them, but he also
presents two more arguments that undermine the notion
of representation as dictated by thesis (3) of the SV. Em-
ployed in his first argument is a particular notion of ab-
stractness of concepts advocated by Cartwright [2.61].
A concept is considered abstract in relation to a set
of more concrete concepts if for the former to apply
it is necessary that one of its concrete instances apply.
One of Frigg’s intuitive examples is that the concept of
traveling is more abstract than the concept of sitting in
a moving train. So according to this sense of abstract-
ness the concept of traveling applies whenever one is
sitting in a moving train and that the abstract concept
does not apply if one is not performing some action
that belongs to the set of concrete instances of traveling.
Frigg then claims, “[. . . ] that possessing a structure is
abstract in exactly this sense and it therefore does not
apply without some more concrete concepts applying
as well” [2.60, p. 55]. He defends this claim with the
following argument. Since to have a structure means to
consist of a set of individuals which enter into some
relations, then it follows that whenever the concept of
possessing a structure applies to S the concept of being
an individual applies to members of a set of S and the
concept of being in a relation applies to some parts of
that set. The concepts of being an individual and being
in a relation are abstract in the above sense. For exam-
ple, given the proper context, for being an individual
to apply, occupying a certain space-time region has to
apply. Similarly, given the proper context, for being in
a relation to apply it must be the case that being greater
than applies. Therefore, both being an individual and
being in a relation are abstract. Thus Frigg concludes,
possessing a structure is abstract; hence for it to apply,
it must be the case that a concrete description of the tar-
get applies. Because, the claim that the representation
relation can be construed as an isomorphism (or similar-
ity) of structures presupposes that the target possesses
a structure, Frigg concludes that such a claim “[. . . ] pre-
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supposes that there is a more concrete description that
is true of the [target] system” [2.60, p. 56]. This argu-
ment shows that to reduce the representation relation to
a mapping of structures the proponents of the SV need
to invoke nonstructural elements into their account of
representation, so pure and simple reduction fails.

Frigg’s second argument, as he states, is inductive.
He examines several examples of systems from differ-
ent contexts in order to support the claim that a target
system does not have a unique structure. For a sys-
tem to have a structure it must be made of individuals
and relations, but slicing up the physical systems of
the world into individuals and relations is dependent on
how we conceptualize the world. The world itself does
not provide us with a unique slicing. “Because differ-
ent conceptualizations may result in different structures
there is no such thing as the one and only structure of
a system” [2.60, p. 57]. One way that Frigg’s argument
could be read is this: Thesis (2) of the SV implies that
the measurements of an experiment are structured to
form a data model. But, according to Frigg, this struc-
turing is not unique. So the claim of thesis (3), that there
is, for example, an isomorphism between a theoretical
model and a data model is not epistemically informative
since there may be numerous other structures that could
be constructed from the data that are not isomorphic to
the theoretical model.

2.2.4 A Unitary Account of Models
Does not Illuminate
Scientific Modeling Practices

The second group of criticisms against the SV consists
of several heterogeneous arguments stemming from
different directions and treating a variety of features
and functions of models. Despite this heterogeneity,
they can be grouped together because they all indi-
rectly undermine the idea that the unitary account of
scientific models given by employing a set theoreti-
cal (or other mathematical) characterization of theory
structure is adequate for understanding the notion of
representational model and the model–experiment re-
lation. This challenge to the SV is indirect because the
main purpose of these arguments is to illuminate partic-
ular features of actual scientific models. In highlighting
these features, these arguments illustrate that actual rep-
resentational models in science are constructed in ways
that are incompatible with the SV, they function in ways
that the SV does not adequately account for and they
represent in ways that is incompatible with the SV’s
account of representation; furthermore, they indicate
that models in science are complex entities that can-
not be thoroughly understood by unitary accounts such
as set-theoretical inclusion. In other words, a conse-

quence of most of these arguments is that the unitary
account of models that the SV provides through the-
sis (1) that all models are constitutive parts of theory
structure, obscures the particular features that represen-
tational scientific models demonstrate.

One such example is Morrison [2.62], who ar-
gues that models are partially autonomous from the
theories that may be responsible for instigating their
construction. This partial autonomy is something that
may derive from the way they function but also from
the way they are constructed. She discusses Prandtl’s
hydrodynamic model of the boundary layer in order to
mark out that the inability of theory to provide an expla-
nation of the phenomenon of fluid flow did not hinder
scientific modeling. Prandtl constructed the model with
little reliance on high-level theory and with a concep-
tual apparatus that was partially independent from the
conceptual resources of theory. This partial indepen-
dence in construction, according to Morrison, gives
rise to functional independence and renders the model
partially autonomous from theory. Furthermore,Morri-
son raises another issue (see [2.62], as well as [2.63]);
that theories, and hence theoretical models as direct
conceptual descendants of theory, are highly abstract
and idealized descriptions of phenomena, and therefore
they represent only the general features of phenom-
ena and do not explain the specific mechanisms at
work in physical systems. In contrast, actual repre-
sentational scientific models – that she construes as
partially autonomous mediators between theories and
phenomena – are constructed in ways that allow them
to function as explanations of the specific mechanisms
and thus function as sources of knowledge about corre-
sponding target systems and their constitutive parts. (As
she makes clear in Morrison [2.64], to regard a model
as partially independent from theory does not mean
that theory plays an unimportant role in its construc-
tion). This argument, in which representational capacity
is correlated to the explanatory power of models, is
meant to achieve two goals. Firstly, to offer a way
by which to go beyond the narrow understanding of
scientific representation as a mapping relation of struc-
ture, and second, to offer a general way to understand
the representational function of both kinds of models
that physicists call theory-driven and phenomenologi-
cal (In Portides [2.65] a more detailed contrast between
Morrison’s view of the representation relation and that
of the SV is offered). Cartwright et al. [2.66] and
Portides [2.67] have also argued that by focusing ex-
clusively on theory-driven models and the mapping
relation criterion, the SV obscures the representational
function of phenomenological models and also many
aspects of scientific theorizing that are the result of phe-
nomenological methods.
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It is noteworthy that the unitary account that the
SV offers may be applicable to theory-driven models.
Whether that is helpful or not is debatable. How-
ever, more often than not representation in science is
achieved by the use of phenomenological models or
phenomenological elements incorporated into theory-
driven models. One aspect of Morrison’s argument is
that if we are not to dismiss the representational capac-
ity of such models we should give up unitary accounts
of models. Cartwright makes a similar point but her ap-
proach to the same problem is from another angle.

Cartwright [2.61, 68] claims that theories are highly
abstract and thus do not and cannot represent what
happens in actual situations. Cartwright’s observation
seems similar to versions of the SV such as Suppe’s,
however her approach is much more robust. To claim
that theories represent what happens in actual situa-
tions, she argues, is to overlook that the concepts used in
them – such as, force functions and Hamiltonians – are
abstract. Such abstract concepts could only apply to the
phenomena whenever more concrete descriptions (as
those present in models) can stand-in for them and for
this to happen the bridge principles of theory must me-
diate. Hence the abstract terms of theory apply to actual
situations via bridge principles, and this makes bridge
principles an operative aspect of theory-application to
phenomena. It is only when bridge principles sanc-
tion the use of theoretical models that we are led to
the construction of a model – with a relatively close
relation to theory – that represents the target system.
But Cartwright observes that there are only a small
number of such theoretical models that can be used
successfully to construct representations of physical
systems and this is because there are only a hand-
ful of theory bridge principles. In most other cases,
where no bridge principles exist that enable the use of
a theoretical model, concrete descriptions of phenom-
ena are achieved by constructing phenomenological
models. Phenomenologicalmodels are constructed with
minimal aid from theory, and surely there is no deduc-
tive (or structural) relation between them and theory.
The relation between the two should be sought in the
nature of the abstract–concrete distinction between sci-
entific concepts, according to Cartwright. Models in
science, whether constructed phenomenologically or by
the use of available bridge principles, encompass de-
scriptions that are in someway independent from theory
because they are made up of more concrete concep-
tual ingredients. A weak reading of this argument is
that the SV could be a plausible suggestion for under-
standing the structure of scientific theories for use in
foundational work. But in the context of utilizing the
theory to construct representations of phenomena, fo-
cusing on the structure of theory does not illuminate

much because it is not sufficient as to account for the
abstract–concrete distinction that exists between theory
and models. A stronger reading of the argument is that
the structure of theories is completely irrelevant to how
theories represent the world, because they just do not
represent it at all. Only models represent pieces of the
world and they are partially independent from theory
because they are constituted by concrete concepts that
apply only to particular physical systems.

Other essays in the volume by Morgan and Mor-
rison [2.69] discuss different aspects of partial inde-
pendence of models from theory. Here are two brief
examples that aim to show the partial independence of
model construction from theory. Suarez [2.70] explains
how simplifications and approximations that are intro-
duced into representational models (such as the London
brothers model of superconductivity) are decided in-
dependently of theory and of theoretical requirements.
This process gives rise to a model that mediates in
the sense that the model itself is the means by which
corrections are established that may be incorporated
into theory in order to facilitate its applications. But
even in cases of models that are strongly linked to
theory such as the MIT-bag model of quark confine-
ment, Hartmann [2.71] argues, many parts of the model
are not motivated by theory but by an accompanying
story about quarks. From the empirical fact that quarks
were not observed physicists were eventually led to the
hypothesis that quarks are confined. But confinement
is not something that follows from theory. Neverthe-
less, via the proper amalgam of theory and story about
quarks the MIT-bag model was constructed to account
for quark confinement.

I mentioned earlier in Sect. 2.2.2 that Giere [2.55]
is also an advocate of the SV. However, his later writ-
ings [2.72, 73] suggest that he makes a gradual shift
from his earlier conception of representational models
in science to a view that neighbors that of Morrison
and Cartwright. Even in Giere [2.55] the reader notices
that he, unlike most other advocates of the SV, is less
concerned with the attempt to give a unitary account
of models and more concerned with the importance
of models in actual scientific practices. But in [2.72]
and [2.73] this becomes more explicit. Giere [2.55] es-
pouses the idea that the laws of a theory are definitional
devices of theoretical models. This view is compati-
ble with the use of scientific laws in the SV. However,
in Giere [2.72, p. 94] he suggests that scientific laws
“[. . . ] should be understood as rules devised by humans
to be used in building models to represent specific as-
pects of the natural world.” It is patent that operating as
rules for building models is quite a different thing from
understanding laws to be the means by which models
are defined. The latter view is in line with the three
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theses of the SV; the former however is only in line
with the view that models are important in scientific
theorizing. Moreover, in Giere [2.73] he makes a more
radical step in distinguishing between the abstract mod-
els (which he calls abstract objects) defined by the laws
and those models used by scientists to represent phys-
ical systems (which he calls representational models).
The latter [2.73, p. 63]

“[. . . ] are designed for use in representing aspects of
the world. The abstract objects defined by scientific
principles [i. e., scientific laws] are, on my view, not
intended directly to represent the world.”

Giere points to the important difference between the
SV and its critics. The SV considers the models that
the theory directly delivers representations of target sys-
tems of the world. Its critics do not think that; they argue
that many successful representational models are con-
structed by a variety of conceptual ingredients and thus
have a degree of autonomy from theory. But if each rep-
resentational model is partially autonomous from the
theory that prompted its construction then a unitary ac-
count of representational models does not seem to be
much enlightening in enhancing our understanding of
why models are so important in scientific theorizing.

2.2.5 General Remark
on the Semantic View

Just like its predecessor the SV employs formal meth-
ods for the philosophical analysis of scientific theories.
In the SV, models of the theory are directly defined by
the laws of the theory, and are thus united under a com-
mon mathematical structure. Of course, mathematical
equations satisfy a structure, no one disputes that math-
ematically formulated theories can be presented in
terms of mathematical structures. Nonetheless, keen to
overcome the philosophical problems associated with
the RV and its focus on the syntactic elements of
theories, the proponents of the SV take the idea of
presenting theories structurally one step further. They
claim that the SV not only offers a canonical struc-
tural formulation for theories, into which any theory
can be given an equivalent reformulation (an idea that,
no doubt, is useful for the philosophy of mathematics),
but they also contend that a scientific theory represents
phenomena because this structure can be linked to em-
pirical data. To defend this assertion, the proponents of
the SV assume that in science there is a sharp distinction
between models of theory and models of data and argue

that scientific representation is no more than a mapping
relation between these two kinds of structures. As we
have seen, serious arguments against the idea that rep-
resentation can be reduced to structural mapping have
surfaced; and these arguments counter the SV indepen-
dently of how the details of the mapping relation is
construed.

Furthermore, the SV implies that by defining a the-
ory structure an indefinite number of models that are
thought to be antecedently available for modeling the
theory’s domain are laid down. Neither this position
has gone unnoticed. Critics of the SV claim that this
idea does not do justice to actual science because it
undervalues the complexities involved in actual scien-
tific model construction and the variety of functions that
models have in science, but more importantly because
it obscures the features of representational models that
distinguish them from the models that are direct descen-
dants of theory.

I claimed that the SV employs a notion of model
that has two functions – interpretation and representa-
tion. In addition, it requires models that have this dual
role to be united under a common structure. It is hard
to reconcile these two ideas and do justice to actual
science. The devices by which the theoretical models
are defined, according to the SV, are the laws of the
theory. Hence the laws of the theory provide the con-
straints that determine the structure of these models.
Now, it is not hard to see that models viewed as inter-
pretations are indeed united under a common structure
determined by the laws of the theory. What is prob-
lematic, however, is that the SV assumes that models
that are interpretations also function as representations
and this means that models functioning as represen-
tations can be united under a common structure. The
truth value of the conjunction models are interpreta-
tions and representations is certainly not a trivial issue.
When scientists construct representational models, they
continuously impose constraints that alter their initial
structure. The departure of the resulting constructs from
the initial structure is such that it is no longer easily jus-
tified to think of them all as united under a common
theory structure. Indeed, in many scientific cases this
departure of individual representational models is such
that they end up having features that may be incom-
patible with other models that are also instigated by the
same theory. These observations lead to the thought that
the model-theory and the model–experiment relations
may in the end be too complex for our formal tools to
capture.
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3. Models and Representation

Roman Frigg, James Nguyen

Models are of central importance in many scientific
contexts. We study models and thereby discover
features of the phenomena they stand for. For this
to be possible models must be representations:
they can instruct us about the nature of reality only
if they represent the selected parts or aspects of
the world we investigate. This raises an important
question: In virtue of what do scientific models
represent their target systems? In this chapter we
first disentangle five separate questions associ-
ated with scientific representation and offer five
conditions of adequacy that any successful answer
to these questions must meet. We then review the
main contemporary accounts of scientific repre-
sentation – similarity, isomorphism, inferentialist,
and fictionalist accounts – through the lens of
these questions. We discuss each of their attributes
and highlight the problems they face. We finally
outline our own preferred account, and suggest
that it provides the most promising way of ad-
dressing the questions raised at the beginning of
the chapter.
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Models play a central role in contemporary science.
Scientists construct models of atoms, elementary par-
ticles, polymers, populations, genetic trees, economies,
rational decisions, airplanes, earthquakes, forest fires,
irrigation systems, and the world’s climate – there is
hardly a domain of inquiry without models. Models are
essential for the acquisition and organization of scien-
tific knowledge. We often study a model to discover
features of the thing it stands for. How does this work?
The answer is that a model can instruct us about the

nature of its subject matter if it represents the selected
part or aspect of the world that we investigate. So if we
want to understand how models allow us to learn about
the world, we have to come to understand how they rep-
resent.

The problem of representation has generated a siz-
able literature, which has been growing fast in particular
over the last decade. The aim of this chapter is to re-
view this body of work and assess the strengths and
weaknesses of the different proposals. This enterprise
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faces an immediate difficulty: Even a cursory look at
the literature on scientific representation quickly reveals
that there is no such thing as the problem of scientific
representation. In fact, we find a cluster of interrelated
problems. In Sect. 3.1 we try to untangle this web and
get clear on what the problems are and on how they
relate to one another (for a historical introduction to
the issue, see [3.1]). The result of this effort is a list
with five problems and five conditions of adequacy,
which provides the analytical lens through which we
look at the different accounts. In Sect. 3.2 we discuss
Griceanism and stipulative fiat. In Sect. 3.3 we look at
the time-honored similarity approach, and in Sect. 3.4
we examine its modern-day cousin, the structuralist ap-
proach. In Sect. 3.5 we turn to inferentialism, a more
recent family of conceptions. In Sect. 3.6 we discuss
the fiction view of models, and in Sect. 3.7 we consider
the conception of representation-as.

Before delving into the discussion, a number of
caveats are in order. The first is that our discussion
in no way presupposes that models are the sole unit
of scientific representation, or that all scientific repre-
sentation is model-based. Various types of images have
their place in science, and so do graphs, diagrams, and
drawings (Perini [3.2–4] and Elkins [3.5] provide dis-
cussions of visual representation in the sciences). In
some contexts scientists use whatWarmbrōd [3.6] calls
natural forms of representation and what Peirce [3.7]
would have classified as indices: tree rings, fingerprints,
disease symptoms. These are related to thermometer
readings and litmus paper indications, which are com-
monly classified as measurements. Measurements also
provide representations of processes in nature, some-
times together with the subsequent condensation of
measurement results in the form of charts, curves, tables
and the like (Tal [3.8] provides a discussion of measure-
ment). And, last but not least, many would hold that
theories represent too. At this point the vexing problem
of the nature of theories and the relation between theo-
ries and models rears is head again. We refer the reader
to Portides’ contribution to this volume, Chap. 2, for
a discussion of this issue. Whether these other forms of
scientific representation have features in common with
howmodels represent is an interesting question, but this
is a problem for another day. Our aim here is a more
modest one: to understand how models represent. To
make the scope of our investigation explicit we call
the kind of representation we are interested in model-
representation.

The second point to emphasize is that our dis-
cussion is not premised on the claim that all models
are representational; nor does it assume that repre-
sentation is the only (or even primary) function of
models. It has been emphasized variously that models

perform a number of functions other than represen-
tation. To mention but few: Knuuttila [3.9, 10] points
out that the epistemic value of models is not limited
to their representational function and develops an ac-
count that views models as epistemic artifacts that allow
us to gather knowledge in diverse ways; Morgan and
Morrison [3.11] emphasize the role models play in
the mediation between theories and the world; Hart-
mann [3.12] discusses models as tools for theory con-
struction; Peschard [3.13] investigates the way in which
models may be used to construct other models and
generate new target systems; and Bokulich [3.14] and
Kennedy [3.15] present nonrepresentational accounts
of model explanation (Woody [3.16] and Reiss [3.17]
provide general discussions of the relation between rep-
resentation and explanation). Not only do we not see
projects like these as being in conflict with a view that
sees some models as representational; we think that the
approaches are in fact complementary.

Finally, there is a popular myth according to which
a representation is a mirror image, a copy, or an im-
itation of the thing it represents. In this view repre-
sentation is ipso facto realistic representation. This is
a mistake. Representations can be realistic, but they
need not. And representations certainly need not be
copies of the real thing. This, we take it, is the moral
of the satire about the cartographers who produce maps
as large as the country itself only to see them aban-
doned. The story has been told by Lewis Carroll in
Sylvie and Bruno and Jorge Luis Borges in On Exacti-
tude in Science. Throughout this review we encounter
positions that make room for nonrealistic representa-
tion and hence testify to the fact that representation is
a much broader notion than mirroring.

There is, however, a sense in which we presuppose
a minimal form of realism. Throughout the discussion
we assume that target systems exist independently of
human observers, and that they are how they are ir-
respective of what anybody thinks about them. That
is, we assume that the targets of representation exist
independently of the representation. This is a presuppo-
sition not everybody would share. Constructivists (and
other kinds of metaphysical antirealists) assume that
there is no phenomenon independent of its represen-
tation: representations constitute the phenomena they
represent (this view is expounded for instance by Lynch
and Wooglar [3.18]; Giere [3.19] offers a critical dis-
cussion). It goes without saying that an assessment of
the constructivist program is beyond the scope of this
review. It is worth observing, though, that many of the
discussions to follow are by no means pointless from
a constructivist perspective. What in the realist idiom
is conceptualized as the representation of an object in
the world by a model would, from the constructivist
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perspective, turn into the study of the relation between
a model and another representation, or an object con-
stituted by another representation. This is because even
from a constructivist perspective, models and their tar-

gets are not identical, and the fact that targets are
representationally constituted would not obliterate the
differences between a target representation and scien-
tific model.

3.1 Problems Concerning Model-Representation

In this section we say what questions a philosophical
account of model-representation has to answer and re-
flect on what conditions such an answer has to satisfy.
As one would expect, different authors have framed the
problem in different ways. Nevertheless, recent discus-
sions about model-representation have tended to clus-
ter around a relatively well-circumscribed set of issues.
The aim of this section is to make these issues explicit
and formulate five problems that an account of model-
representation has to answer. These problems will help
us in structuring the discussion in later sections and put
views and positions into perspective. In the course of do-
ing so we also articulate five conditions of adequacy that
every account of model-representation has to satisfy.

Models are representations of a selected part or as-
pect of the world. This is the model’s target system.
The first and most fundamental question about a model
therefore is: In virtue of what is a model a represen-
tation of something else? Attention has been drawn
to this issue by Frigg ([3.20, p. 17], [3.21, p. 50]),
Morrison [3.22, p. 70], and Suárez [3.23, p. 230]. To
appreciate the thrust of this question it is instructive to
briefly ponder the same problem in the context of pic-
torial representation. When seeing, say, Soutine’s The
Groom or the Bellboy we immediately realize that it
depicts a man in a red dress. Why is this? Per se the
painting is a plane surface covered with pigments. How
does an arrangement of pigments on a surface represent
something outside the picture frame? Likewise, models,
before being representations of atoms, populations, or
economies, are equations, structures, fictional scenar-
ios, or mannerly physical objects. The problem is: what
turns equations and structures, or fictional scenarios and
physical objects into representations of something be-
yond themselves? It has become customary to phrase
this problem in terms of necessary and sufficient con-
ditions and throughout this review we shall follow suit
(some may balk at this, but it’s worth flagging that the
standard arguments against such an analysis, e.g., those
surveyed in Laurence and Margolis [3.24], lose much
of their bite when attention is restricted to core cases as
we do here). The question then is: What fills the blank
in M is a model-representation of T iff , where M
stands for model and T for target system?

To spare ourselves difficulties further down the
line, this formulation needs to be adjusted in light of

a crucial condition of adequacy that any account of
model-representation has to meet. The condition is that
models represent in a way that allows us to form hy-
potheses about their target systems. We can generate
claims about a target system by investigating a model
that represents it. Many investigations are carried out on
models rather than on reality itself, and this is done with
the aim of discovering features of the things models
stands for. Every acceptable theory of scientific repre-
sentation has to account for how reasoning conducted
on models can yield claims about their target systems.
Let us call this the surrogative reasoning condition.

The term surrogative reasoning was introduced
by Swoyer [3.25, p. 449], and there seems to be
widespread agreement on this point (although Callen-
der and Cohen [3.26], whose views are discussed in
Sect. 3.3, provide a noteworthy exception). To mention
just a few writers on the subject: Bailer-Jones [3.27,
p. 59] emphasizes that models “tell us something
about certain features of the world” (original empha-
sis). Boliskna [3.28] and Contessa [3.29] both call
models epistemic representations; Frigg ([3.21, p. 51],
[3.30, p. 104]) sees the potential for learning as an es-
sential explanandum for any theory of representation;
Liu [3.31, p. 93] emphasizes that the main role for mod-
els in science and technology is epistemic;Morgan and
Morrison [3.11, p. 11] regard models as investigative
tools; Suárez ([3.23, p. 229], [3.32, p. 772]) submits that
models license specific inferences about their targets;
and Weisberg [3.33, p. 150] observes that the “model-
world relation is the relationship in virtue of which
studying a model can tell us something about the na-
ture of a target system”. This distinguishes models from
lexicographical representations such as words. Study-
ing the internal constitution of a model can provide
information about the target. Not so with words. The
properties of a word (consisting of so and so many let-
ters and syllables, occupying this or that position in
a dictionary, etc.) do not matter to its functioning as
a word; and neither do the physical properties of the ink
used to print words on a piece of paper. We can replace
one word by another at will (which is what happens in
translations from one language to another), and we can
print words with other methods than ink on paper. This
is possible because the properties of a word as an object
do not matter to its semantic function.
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This gives rise to a problem for the schema M
is a model-representation of T iff . The prob-
lem is that any account of representation that fills the
blank in a way that satisfies the surrogative reason-
ing condition will almost invariably end up covering
other kinds of representations too. Geographical maps,
graphs, diagrams, charts, drawings, pictures, and pho-
tographs often provide epistemic access to features of
the items they represent, and hence are likely to fall
under an account of representation that explains this
sort of reasoning. This is a problem for an analy-
sis of model-representation in terms of necessary and
sufficient conditions because if something that is not
prima facie a model (for instance a map or a photo-
graph) satisfies the conditions of an account of model-
representation, then one either has to conclude that the
account fails because it does not provide necessary con-
ditions, or that first impressions are wrong and other
representations (such as maps or photographs) are in
fact model-representations.

Neither of these options is appealing. To avoid this
problem we follow a suggestion of Contessa’s [3.29]
and broaden the scope of the investigation. Rather
than analyzing the relatively narrow category of model-
representation, we analyze the broader category of epis-
temic representation. This category comprises model-
representations, but it also includes other representa-
tions that allow for surrogative reasoning. The task then
becomes to fill the blank in M is an epistemic repre-
sentation of T iff . For brevity we use R.M; T/ as
a stand in forM is an epistemic representation of T , and
so the biconditional becomes R.M;T/ iff . We call
the general problem of figuring out in virtue of what
something is an epistemic representation of something
else the epistemic representation problem (ER-problem,
for short), and the above biconditional the ER-scheme.
So one can say that the ER is to fill the blank in the
ER-scheme. Frigg [3.21, p. 50] calls this the “enigma
of representation” and in Suárez’s [3.23, p. 230] termi-
nology this amounts to identifying the constituents of
a representation (although he questions whether both
necessary and sufficient conditions can be given; see
Sect. 3.5 for further discussion on how his views fit into
the ER-framework).

Analyzing the larger category of epistemic rep-
resentation and placing model-representations in that
category can be seen as giving rise to a demarcation
problem for scientific representations: How do scien-
tific model-representations differ from other kinds of
epistemic representations? We refer to this question as
the representational demarcation problem. Callender
and Cohen [3.26, p. 69] formulate this problem, but
then voice skepticism about our ability to solve it [3.26,
p. 83]. The representational demarcation problem has

received little, if any, attention in the recent literature
on scientific representation, which would suggest that
other authors either share Callender and Cohen’s skep-
ticism, or regard it as a nonissue to begin with. The
latter seems to be implicit in approaches that discuss
scientific representation alongside pictorial representa-
tion such as Elgin [3.34], French [3.35], Frigg [3.21],
Suárez [3.32], and van Fraassen [3.36]. But a dismissal
of the problem is in no way a neutral stance. It amounts
to no less than the admission that model-representations
are not fundamentally different from other epistemic
representations, or that we are unable to pin down what
the distinguishing features are. Such a stance should be
made explicit and, ideally, justified.

Two qualifications concerning the ER-scheme need
to be added. The first concerns its flexibility. Some
might worry that posing the problem in this way pre-
judges what answers can be given. The worry comes in
a number of variants. A first variant is that the scheme
presupposes that representation is an intrinsic relation
between M and T (i. e., a relation that only depends on
intrinsic properties of M and T and on how they re-
late to one another rather than on how they relate to
other objects) or even that it is naturalisable (a notion
further discussed in Sect. 3.3). This is not so. In fact,
R might depend on any number of factors other than
M and T themselves, and on ones that do not qual-
ify as natural ones. To make this explicit we write the
ER-scheme in the form R.M;T/ iff C.M;T; x1; : : : ; xn/,
where n is a natural number and C is an (nC2)-ary rela-
tion that grounds representation. The xi can be anything
that is deemed relevant to epistemic representation, for
instance a user’s intentions, standards of accuracy, and
specific purposes. We call C the grounding relation of
an epistemic representation.

Before adding a second qualification, let us in-
troduce the next problem in connection with model-
representation. Even if we restrict our attention to
scientific epistemic representations (if they are found to
be relevantly different to nonscientific epistemic repre-
sentations as per the demarcation problem above), not
all representations are of the same kind. In the case of
visual representations this is so obvious that it hardly
needs mention: An Egyptian mural, a two-point per-
spective ink drawing, a pointillist oil painting, an archi-
tectural plan, and a road map represent their respective
targets in different ways. This pluralism is not limited to
visual representations. Model-representations do not all
seem to be of the same kind either.Woody [3.37] argues
that chemistry as a discipline has its own ways to repre-
sent molecules. But differences in style can also appear
in models from the same discipline.Weizsäcker’s liquid
drop model represents the nucleus of an atom in a man-
ner that seems to be different from the one of the shell
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model. A scale model of the wing of a plane represents
the wing in a way that is different from how a mathe-
matical model of its cross section does. Or Phillips and
Newlyn’s famous hydraulic machine and Hicks’ math-
ematical models both represent a Keynesian economy
but they seem to do so in different ways. This gives
rise to the question: What styles are there and how can
they be characterized? This is the problem of style [3.21,
p. 50]. There is no expectation that a complete list of
styles be provided in response. Indeed, it is unlikely
that such a list can ever be drawn up, and new styles
will be invented as science progresses. For this rea-
son a response to the problem of style will always be
open-ended, providing a taxonomy of what is currently
available while leaving room for later additions.

With this in mind we can now turn to the second
qualification concerning the ER-scheme. The worry is
this: The scheme seems to assume that representation
is a monolithic concept and thereby make it impossible
to distinguish between different kinds of representation.
The impression is engendered by the fact the scheme
asks us to fill a blank, and blank is filled only once. But
if there are different kinds of representations, we should
be able to fill the blank in different ways on different
occasions because a theory of representation should not
force upon us the view that the different styles are all
variations of one overarching concept of representation.

The ER-scheme is more flexible than it appears at
first sight. There are at least three ways in which dif-
ferent styles of representations can be accommodated.
For the sake of illustration, and to add some palpabil-
ity to an abstract discussion, let us assume that we have
identified two styles: analogue representation and ide-
alized representation. The result of an analysis of these
relations is the identification of their respective ground-
ing relations. Let CA.M;T; : : : / and CI.M;T; : : : / be
these relations. The first way of accommodating them
in the ER-scheme is to fill the blank with the disjunction
of the two: R.M;T/ iff CA.M;T; : : : / or CI.M;T; : : : /.
In plain English: M represents T if and only if M is
an analogue representation of T or M is an idealized
representation of T . This move is possible because,
first appearances notwithstanding, nothing hangs on
the grounding relation being homogeneous. The rela-
tion can be as complicated as we like and there is no
prohibition against disjunctions. In the above case we
have CD ŒCA or CI�. Furthermore, the grounding re-
lation could even be an open disjunction. This would
help accommodating the above observation that a list
of styles is potentially open-ended. In that case there
would be a grounding relation for each style and the
scheme could be written as R.M; T/ iff C1.M;T : : : /
or C2.M;T : : : / or C3.M;T : : : / or : : : , where the Ci

are the grounding relations for different styles. This

is not a new scheme; it’s the old scheme where CD
ŒC1 or C2 or C3 or : : : � is spelled out.

Alternatively one could formulate a different
scheme for every kind of representation. This would
amount to changing the scheme slightly in that one does
not analyze epistemic representation per se. Instead one
would analyze different kinds of epistemic representa-
tions. Consider the above example again. Let R1.M;T/
stand for M is an analogue epistemic representation of
T and R2.M;T/ for M is an idealized epistemic repre-
sentation of T. The response to the ER-problem then
consists in presenting the two biconditionals R1.M;T/
iff CA and R2.M;T/ iff CI. This generalizes straight-
forwardly to the case of any number of styles, and the
open-endedness of the list of styles can be reflected in
the fact that an open-ended list of conditionals of the
form Ri.M;T/ iff Ci can be given, where the index
ranges over styles.

In contrast with the second option, which pulls in
the direction of more diversity, the third aims for more
unity. The crucial observation here is that the ground-
ing relation can in principle be an abstract relation that
can be concretized in different ways, or a determinable
that can have different determinates. On the third view,
then, the concept of representation is like the concept
of force (which is abstract in that in a concrete situ-
ation force is gravity or electromagnetic attraction or
some other specific force), or like color (where a col-
ored object must be blue or green or ). This view
would leave R.M;T/ iff C.M;T; x1; : : : ; xn/ unchanged
and take it as understood that C is an abstract relation.

At this point we do not adjudicate between these
options. Each has its own pros and cons, and which
one is the most convenient to work with depends on
one’s other philosophical commitments. What matters
is that the ER-scheme does have the flexibility to ac-
commodate different representational styles, and that it
can in fact accommodate them in at least three different
ways.

The next problem in line for the theory of model-
representation is to specify standards of accuracy.
Some representations are accurate; others aren’t. The
Schrödinger model is an accurate representation of the
hydrogen atom; the Thomson model isn’t. On what
grounds do we make such judgments? In Morrison’s
words: “how do we identify what constitutes a accurate
representation?” [3.22, p. 70]. We call this the prob-
lem of standards of accuracy. Answering this question
might make reference to the purposes of the model and
model user, and thus it is important to note that by accu-
racy we mean something that can come in degrees and
may be context dependent. Providing a response to the
problem of accuracy is a crucial aspect of an account of
epistemic representation.
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This problem goes hand in hand with a second
condition of adequacy: the possibility of misrepresen-
tation. Asking what makes a representation an accurate
representation already presupposes that inaccurate rep-
resentations are representations too. And this is how it
should be. If M does not accurately portray T , then it
is a misrepresentation but not a nonrepresentation. It is
therefore a general constraint on a theory of epistemic
representation that it has to make misrepresentation
possible. This can be motivated by a brief glance at
the history of science, but is plausibly also part of the
concept of representation, and as such is found in dis-
cussions of other kinds of representation (Stitch and
Warfield [3.38, pp. 6–7], for instance, suggest that a the-
ory of mental representation should be able to account
for misrepresentation, as do Sterelny andGriffiths [3.39,
p. 104] in their discussion of genetic representation).
A corollary of this requirement is that representation is
a wider concept than accurate representation and that
representation cannot be analyzed in terms of accurate
representation.

A related condition concerns models that misrepre-
sent in the sense that they lack target systems. Models
of ether, phlogiston, four-sex populations, and so on, are
all deemed scientific models, but ether, phlogiston, and
four-sex populations don’t exist. Such models lack (ac-
tual) target systems, and one hopes that an account of
epistemic representation would allow us to understand
how these models work. We call this the problem of tar-
getless models (or models without targets).

The fourth condition of adequacy for an account
of model-representation is that it must account for
the directionality of representation. Models are about
their targets, but (at least in general) targets are not
about their models. So there is an essential direc-
tionality to representations, and an account of model-
representation has to identify the root of this direction-
ality. We call this the requirement of directionality.

Many scientific models are highly mathematized,
and their mathematical aspects are crucial to their cog-
nitive as well as their representational function. This
forces us to reconsider a time-honored philosophical
puzzle: the applicability of mathematics in the empirical
sciences. Even though the problem can be traced back
at least to Plato’s Timaeus, its canonical modern expres-
sion is due toWigner, who famously remarked that “the
enormous usefulness of mathematics in the natural sci-
ences is something bordering on the mysterious and that
there is no explanation for it” [3.40, p. 2]. One need not
go as far as seeing the applicability of mathematics as
an inexplicable miracle, but the question remains: How
does mathematics hook onto the world?

The recent discussion of this problem has taken
place in a body of literature that grew out of the philos-

ophy of mathematics (see Shapiro [3.41, Chap. 8] for
a review). But, with the exception of Bueno and Coly-
van [3.42], there has been little contact with the liter-
ature on scientific modeling. This is a regrettable state
of affairs. The question of how a mathematized model
represents its target implies the question of how mathe-
matics applies to a physical system. So rather than sep-
arating the question of model-representation from the
problem of the applicability of mathematics and dealing
with them in separate discussions, they should be seen
as the two sides of the same coin and be dealt with in
tandem. For this reason, our fifth and final condition of
adequacy is that an account of representation has to ex-
plain how mathematics is applied to the physical world.
We call this the applicability of mathematics condition.

In answering the above questions one invariably
runs up against a further problem, the problem of on-
tology: What kinds of objects are models? Are they
structures in the sense of set theory, fictional entities,
descriptions, equations or yet something else? Or are
there no models at all? While some authors develop
an ontology of models, others reject an understand-
ing of models as things and push a program that can
be summed up in the slogan modeling without mod-
els [3.43]. There is also no presupposition that all
models be of the same kind. Some models are material
objects, some are things that one holds in one’s head
rather than one’s hands (to use Hacking’s phrase [3.44,
p. 216]). For the most part, the focus in debates about
representation has been on nonmaterial models, and
we will follow this convention. It is worth emphasiz-
ing, however, that also the seemingly straightforward
material models raise interesting philosophical ques-
tions: Rosenblueth and Wiener [3.45] discuss the cri-
teria for choosing an object as a model; Ankeny and
Leonelli [3.46] discuss issues that arise when using
organisms as models; and the contributors to [3.47] dis-
cuss representation in the laboratory.

A theory of representation can recognize different
kinds of models, or indeed no models at all. The re-
quirement only asks us to be clear on our commitments
and provide a list with things, if any, that we recognize
as models and give an account of what they are in case
these entities raise questions (what exactly do we mean
by something that one holds in one’s head rather than
one’s hands?).

In sum, an account of model-representation has to
do the following:

1. Provide an answer to the epistemic representation
problem (filling the blank in ER-scheme: M is an
epistemic representation of T iff . . . ).

2. Take a stand on the representational demarcation
problem (the question of how scientific epistemic
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representations differ from other kinds of epistemic
representations).

3. Respond to the problem of style (what styles are
there and how can they be characterized?).

4. Formulate standards of accuracy (how do we iden-
tify what constitutes an accurate representation?).

5. Address the problem of ontology (what kinds of ob-
jects are models?).

Any satisfactory answer to these five issues will
have to meet the following five conditions of adequacy:

1. Surrogative reasoning condition (models represent
their targets in a way that allows us to generate hy-
potheses about them).

2. Possibility of misrepresentation (if M does not ac-
curately represent T , then it is a misrepresentation
but not a nonrepresentation).

3. Targetless models (what are we to make of scientific
representations that lack targets?).

4. Requirement of directionality (models are about
their targets, but targets are not about their mod-
els).

5. Applicability of mathematics condition (how the
mathematical apparatus used in M latches onto the
physical world).

To frame the problem in this way is not to say that
these are separate and unrelated issues, which can be
dealt with one after the other in roughly the same way
in which we first buy a ticket, walk to the platform and
then take a train. This division is analytical, not factual.
It serves to structure the discussion and to assess pro-
posals; it does not imply that an answer to one of these
questions can be dissociated from what stance we take
on the other issues.

3.2 General Griceanism and Stipulative Fiat

Callender and Cohen [3.26] submit that the entire de-
bate over scientific representation has started on the
wrong foot. They claim that scientific representation
is not different from “artistic, linguistic, and culinary
representation” and in fact “there is no special problem
about scientific representation” [3.26, p. 67]. Underly-
ing this claim is a position Callender and Cohen call
General Griceanism (GG). The core of GG is the reduc-
tive claim that most representations we encounter are
“derivative from the representational status of a privi-
leged core of representations” [3.26, p. 70]. GG then
comes with a practical prescription about how to pro-
ceed with the analysis of a representation [3.26, p. 73]:

“The General Gricean view consists of two stages.
First, it explains the representational powers of
derivative representations in terms of those of fun-
damental representations; second, it offers some
other story to explain representation for the funda-
mental bearers of content.”

Of these stages only the second requires serious
philosophical work, and this work is done in the phi-
losophy of mind because the fundamental form of
representation is mental representation.

Scientific representation is a derivative kind of rep-
resentation [3.26, pp. 71,75] and hence falls under the
first stage of the above recipe. It is reduced to mental
representation by an act of stipulation [3.26, pp. 73–74]:

“Can the salt shaker on the dinner table repre-
sent Madagascar? Of course it can, so long as you
stipulate that the former represents the latter. [. . . ]
Can your left hand represent the Platonic form of

beauty? Of course, so long as you stipulate that the
former represents the latter. [. . . ] On the story we
are telling, then, virtually anything can be stipulated
to be a representational vehicle for the representa-
tion of virtually anything [. . . ]; the representational
powers of mental states are so wide-ranging that
they can bring about other representational relations
between arbitrary relata by dint of mere stipulation.
The upshot is that, once one has paid the admittedly
hefty one-time fee of supplying a metaphysics of
representation for mental states, further instances of
representation become extremely cheap.”

So explaining any form of representation other than
mental representation is a triviality – all it takes is an
act of “stipulative fiat” [3.26, p. 75]. This supplies their
answer to the ER-problem:

Definition 3.1 Stipulative fiat
A scientific model M represents a target system T iff
a model user stipulates that M represents T .

On this view, scientific representations are cheap to
come by. The question therefore arises why scientists
spend a lot of time constructing and studying complex
models if they might just as well take a salt shaker and
turn it into a representation of, say, a Bose–Einstein
condensate by an act of fiat. Callender andCohen admit
that there are useful and not so useful representations,
and that salt shakers belong the latter group. However,
they insist that this has nothing to do with representa-
tion [3.26, p. 75]:
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“The questions about the utility of these representa-
tional vehicles are questions about the pragmatics of
things that are representational vehicles, not ques-
tions about their representational status per se.”

So, in sum, scientific representation [3.26, p. 78]

“is constituted in terms of a stipulation, together
with an underlying theory of representation for
mental states, isomorphism, similarity, and infer-
ence generation are all idle wheels.”

The first question we are faced with when assessing
this account is the relation between GG and stipula-
tive fiat (Definition 3.1). Callender and Cohen do not
comment on this issue, but that they mention both in
the same breath would suggest that they regard them as
one and the same doctrine, or at least as the two sides
of the same coin. This is not so. Stipulative fiat (Def-
inition 3.1) is just one way of fleshing out GG, which
only requires that there be some explanation of how
derivative representations relate to fundamental repre-
sentations; GG does not require that this explanation
be of a particular kind, much less that it consists of
nothing but an act of stipulation ([3.48, pp. 77–78],
[3.49, p. 244]). Even if GG is correct, it doesn’t fol-
low that stipulative fiat is a satisfactory answer to the
ER-problem. Model-representation can, in principle, be
reduced to fundamental representation in many differ-
ent ways (some of which we will encounter later in
this chapter). Conversely, the failure of stipulate fiat
does not entail that we must reject GG: one can up-
hold the idea that an appeal to the intentions of model
users is a crucial element in an account of scientific
representation even if one dismisses stipulative fiat
(Definition 3.1).

Let us now examine stipulative fiat (Definition 3.1).
Callender and Cohen emphasize that anything can be
a representation of anything else [3.26, p. 73]. This is
correct. Things that function as models don’t belong
to a distinctive ontological category, and it would be
a mistake to think that that some objects are, intrin-
sically, representations and other are not. This point
has been made by others too (including Frigg [3.50,
p. 99], Giere [3.51, p. 269], Suárez [3.32, p. 773],
Swoyer [3.25, p. 452], and Teller [3.52, p. 397]) and,
as we shall see, it is a cornerstone of several alternative
accounts of representation.

But just because anything can, in principle, be
a representation of anything else, it doesn’t follow that
a mere act of stipulation suffices to turn M into a rep-
resentation of T . Furthermore, it doesn’t follow that an
object elevated to the status of a representation by an
act of fiat represents its target in a way that can ap-
propriately be characterized as an instance of epistemic

representation. We discuss both concerns in reverse
order.

Stipulative fiat (Definition 3.1) fails to meet the
surrogative reasoning condition: it fails to provide an
account of how claims about Madagascar could be ex-
tracted from reasoning about the salt shaker. Even if
we admit that stipulative fiat (Definition 3.1) estab-
lishes that models denote their targets (and as we will
see soon, there is a question about this), denotation
is not sufficient for epistemic representation. Both the
word Napoleon and Jacques-Louis David’s portrait of
Napoleon serve to denote the French general. But this
does not imply that they represent him in the same
way, as noted by Toon [3.48, pp. 78–79]. Bueno and
French [3.53, pp. 871–874] gesture in the same direc-
tion when they point to Peirce’s distinction between
icon, index and symbol and dismiss Callender and Co-
hen’s views on grounds that they cannot explain the
obvious differences between different kinds of repre-
sentations.

Supporters of stipulative fiat (Definition 3.1) could
try to mitigate the force of this objection in two ways.
First, they could appeal to additional facts about the
object, as well as its relation to other items, in or-
der to account for surrogative reasoning. For instance,
the salt shaker being to the right of the pepper mill
might allow us to infer that Madagascar is to the east
of Mozambique. Moves of this sort, however, invoke
(at least tacitly) a specifiable relation between features
of the model and features of the target (similarity, iso-
morphism, or otherwise), and an invocation of this kind
goes beyond mere stipulation. Second, the last quota-
tion from Callender and Cohen suggests that they might
want to relegate surrogative reasoning into the realm of
pragmatics and deny that it is part of the relation prop-
erly called epistemic representation. This, however, in
effect amounts to a removal of the surrogative reasoning
condition from the desiderata of an account of scientific
representation, and we have argued in Sect. 3.1 that sur-
rogative reasoning is one of the hallmarks of scientific
representation. And even if it were pragmatics, we still
would want an account of how it works.

Let us now turn to our first point, that a mere act
of stipulation is insufficient to turnM into a representa-
tion of T . We take our cue from a parallel discussion in
the philosophy of language, where it has been pointed
out that it is not clear that stipulation is sufficient to
establish a denotational relationship (which is weaker
than epistemic representation). A position similar to
stipulative fiat (Definition 3.1) faces what is known as
the Humpty Dumpty problem, named in reference to
Lewis Carroll’s discussion of Humpty using the word
glory to mean a nice knockdown argument [3.54, 55]
(it’s worth noting that this debate concerns meaning,
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rather than denotation, but it’s plausible that it can be
reconstructed in terms of the latter). If stipulation is all
that matters, then as long as Humpty simply stipulates
that glory means a nice knockdown argument, then it
does so. And this doesn’t seem to be the case. Even if
the utterance glory could mean a nice knockdown argu-
ment – if, for example, Humpty was speaking a different
language – in the case in question it doesn’t, irre-
spective of Humpty’s stipulation. In the contemporary
philosophy of language the discussion of this prob-
lem focuses more on the denotation of demonstratives
rather than proper names, and work in that field focuses
on propping up existing accounts so as to ensure that
a speaker’s intentions successfully establish the deno-
tation of demonstratives uttered by the speaker [3.56].
Whatever the success of these endeavors, their mere ex-
istence shows that successfully establishing denotation
requires moving beyond a bare appeal to stipulation, or
brute intention. But if a brute appeal to intentions fails
in the case of demonstratives – the sorts of terms that
such an account would most readily be applicable to –
then we find it difficult to see how stipulative fiat (Defi-
nition 3.1) will establish a representational relationship
between models and their targets. Moreover, this whole
discussion supposed that an intention-based account of
denotation is the correct one. This is controversial – see
Reimer and Michaelson [3.57] for an overview of dis-
cussions of denotation in the philosophy of language.
If this is not the correct way to think about denotation,

then stipulative fiat (Definition 3.1) will fail to get off
the ground at all.

It now pays that we have separated GG from stipu-
lative fiat (Definition 3.1). Even though stipulative fiat
(Definition 3.1) does not provide an adequate answer
to the ER-problem, one can still uphold GG. As Cal-
lender and Cohen note, all that it requires is that there
is a privileged class of representations (they take them
to be mental states but are open to the suggestion that
they might be something else [3.26, p. 82]), and that
other types of representations owe their representational
capacities to their relationship with the primitive ones.
So philosophers need an account of how members of
this privileged class of representations represent, and
how derivative representations, which includes scien-
tific models, relate to this class.

This is a plausible position, and when stated like
this, many recent contributors to the debate on scientific
representation can be seen as falling under the um-
brella of GG. As we will see below, the more developed
versions of the similarity (Sect. 3.3) and isomorphism
(Sect. 3.4) accounts of scientific representation make
explicit reference to the intentions and purposes of
model users, even if their earlier iterations did not.
And so do the accounts discussed in the latter sections,
where the intentions of model users (in a more com-
plicated manner than that suggested by stipulative fiat
(Definition 3.1)) are invoked to establish epistemic rep-
resentation.

3.3 The Similarity Conception

Moving on from the Gricean account we now turn to
the similarity conception of scientific representation (in
aesthetics the term resemblance is used more com-
monly than similarity, but there does not seem to be
a substantive difference between the notions, and we
use the terms as synonyms throughout). Similarity and
representation initially appear to be two closely related
concepts, and invoking the former to ground the latter
has a philosophical lineage stretching back at least as
far as Plato’s The Republic.

In its most basic guise the similarity conception
of scientific representation asserts that scientific mod-
els represent their targets in virtue of being similar to
them. This conception has universal aspirations in that
it is taken to account for epistemic representation across
a broad range of different domains. Paintings, statues,
and drawings are said to represent by being similar to
their subjects, (see Abell [3.58] and Lopes [3.59] for rel-
atively current discussions of similarity in the context of
visual representation). And recently Giere, one of the

view’s leading contemporary proponents, proclaimed
that it covers scientific models alongside “words, equa-
tions, diagrams, graphs, photographs, and, increas-
ingly, computer-generated images” [3.60, p. 243] (see
also Giere [3.61, p. 272], and for further discussion
Toon [3.49, pp. 249–250]). So the similarity view re-
pudiates the demarcation problem and submits that
the same mechanism, namely similarity, underpins dif-
ferent kinds of representation in a broad variety of
contexts. (Sometimes the similarity view is introduced
by categorizing models as icons in Peirce’s sense, and,
as Kralemann and Lattmann point out, icons represent
“on the basis of a similarity relation between them-
selves and their objects” [3.62, p. 3398].)

The view also offers an elegant account of surroga-
tive reasoning. Similarities between model and target
can be exploited to carry over insights gained in the
model to the target. If the similarity betweenM and T is
based on shared properties, then a property found in M
would also have to be present in T; and if the similar-
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ity holds between properties themselves, then T would
have to instantiate properties similar to M (however, it
is worth noting that this kind of knowledge transfer can
cause difficulties in some contexts, Frigg et al. [3.63]
discuss these difficulties in the context of nonlinear dy-
namic modeling).

However, appeal to similarity in the context of rep-
resentation leaves open whether similarity is offered as
an answer to the ER-problem, the problem of style, or
whether it is meant to set standards of accuracy. Pro-
ponents of the similarity account typically have offered
little guidance on this issue. So we examine each op-
tion in turn and ask whether similarity offers a viable
answer. We then turn to the question of how the simi-
larity view deals with the problem of ontology.

3.3.1 Similarity and ER-Problem

Understood as response to the ER-problem, a similarity
view of representation amounts to the following:

Definition 3.2 Similarity 1
A scientific model M represents a target T iff M and T
are similar.

A well-known objection to this account is that similar-
ity has the wrong logical properties. Goodman [3.64,
pp. 4–5] submits that similarity is symmetric and re-
flexive yet representation isn’t. If object A is similar to
object B, then B is similar to A. But if A represents B,
then B need not (and in fact in most cases does not)
represent A: the Newtonian model represents the so-
lar system, but the solar system does not represent the
Newtonian model. And everything is similar to itself,
but most things do not represent themselves. So this
account does not meet our third condition of adequacy
for an account of scientific representation insofar as it
does not provide a direction to representation. (Simi-
lar problems also arise in connection with other logical
properties, e.g., transitivity; see Frigg [3.30, p. 31] and
Suárez [3.23, pp. 232–233].)

Yaghmaie [3.65] argues that this conclusion – along
with the third condition itself – is wrong: epistemic rep-
resentation is symmetric and reflexive (he discusses this
in the context of the isomorphism view of represen-
tation, which we turn to in the next section, but the
point applies here as well). His examples are drawn
from mathematical physics, and he presents a detailed
case study of a symmetric representation relation be-
tween quantum field theory and statistical mechanics.
His case raises interesting questions, but even if one
grants that Yaghmaie has identified a case where repre-
sentation is reflexive and symmetrical it does not follow
that representation in general is. The photograph in

Jane’s passport represents Jane; but Jane does not rep-
resent her passport photograph; and the same holds true
for myriads of other representations. Goodman is cor-
rect in pointing out that typically representation is not
symmetrical and reflexive: a target T does not represent
modelM just becauseM represents T .

A reply diametrically opposed to Yaghmaie’s
emerges from the writings of Tversky and Weisberg.
They accept that representation is not symmetric, but
dispute that similarity fails on this count. Using a grad-
ual notion of similarity (i. e., one that allows for state-
ments like A is similar to B to degree d), Tversky found
that subjects in empirical studies judged that North Ko-
rea was more similar to China than China was to North
Korea [3.66]; similarly Poznic [3.67, Sect. 4.2] points
out with reference to the characters in a Polanski movie
that the similarity relation between a baby and the father
need not be symmetric.

So allowing degrees into ones notion of similarity
makes room for an asymmetry (although degrees by
themselves are not sufficient for asymmetry; metric-
based notions are still symmetric). This raises the ques-
tion of how to analyze similarity. We discuss this thorny
issue in some detail in the next subsection. For now
we concede the point and grant that similarity need not
always be symmetrical. However, this does not solve
Goodman’s problem with reflexivity (as we will see on
Weisberg’s notion of similarity everything is maximally
similar to itself); nor does it, as will see now, solve other
problems of the similarity account.

However the issue of logical properties is resolved,
there is another serious problem: similarity is too inclu-
sive a concept to account for representation. In many
cases neither one of a pair of similar objects repre-
sents the other. Two copies of the same book are similar
but neither represents the other. Similarity between
two items is not enough to establish the requisite re-
lationship of representation; there are many cases of
similarity where no representation is involved. And this
won’t go away even if similarity turns out to be non-
symmetric. That North Korea is similar to China (to
some degree) does not imply that North Korea rep-
resents China, and that China is not similar to North
Korea to the same degree does not alter this conclusion.

This point has been brought home in a now-classical
thought experiment due to Putnam [3.68, pp. 1–3] (but
see also Black [3.69, p. 104]). An ant is crawling on
a patch of sand and leaves a trace that happens to resem-
ble Winston Churchill. Has the ant produced a picture
of Churchill? Putnam’s answer is that it didn’t because
the ant has never seen Churchill and had no intention to
produce an image of him. Although someone elsemight
see the trace as a depiction of Churchill, the trace itself
does not represent Churchill. This, Putnam concludes,
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shows that “[s]imilarity [. . . ] to the features of Winston
Churchill is not sufficient to make something represent
or refer to Churchill” [3.68, p. 1]. And what is true of
the trace and Churchill is true of every other pair of
similar items: similarity on its own does not establish
representation.

There is also a more general issue concerning simi-
larity: it is too easy to come by. Without constraints on
what counts as similar, any two things can be consid-
ered similar to any degree [3.70, p. 21]. This, however,
has the unfortunate consequence that anything repre-
sents anything else because any two objects are similar
in some respect. Similarity is just too inclusive to ac-
count for representation. An obvious response to this
problem is to delineate a set of relevant respects and
degrees to which M and T have to be similar. This sug-
gestion has been made explicitly by Giere [3.71, p. 81]
who suggests that models come equipped with what he
calls theoretical hypotheses, statements asserting that
model and target are similar in relevant respects and to
certain degrees. This idea can be molded into the fol-
lowing definition:

Definition 3.3 Similarity 2
A scientific model M represents a target T iff M and T
are similar in relevant respects and to the relevant de-
grees.

On this definition one is free to choose one’s respects
and degrees so that unwanted similarities drop out
of the picture. While this solves the last problem, it
leaves the others untouched: similarity in relevant re-
spects and to the relevant degrees is reflexive (and
symmetrical, depending on one’s notion of similar-
ity); and presumably the ant’s trace in the sand is still
similar to Churchill in the relevant respects and de-
grees but without representing Churchill. Moreover,
similarity 2 (Definition 3.3) introduces three new prob-
lems.

First, a misrepresentation is one that portrays its
target as having properties that are not similar in the
relevant respects and to the relevant degrees to the
true properties of the target. But then, on similar-
ity 2 (Definition 3.3), M is not a representation at
all. Ducheyne [3.72] embraces this conclusion when
he offers a variant of a similarity account that explic-
itly takes the success of the hypothesized similarity
between a model and its target to be a necessary con-
dition on the model representing the target. In Sect. 3.2
we argued that the possibility of misrepresentation is
a condition of adequacy for any acceptable account of
representation and so we submit that misrepresentation
should not be conflated with nonrepresentation ([3.20,
p. 16], [3.23, p. 235]).

Second, similarity in relevant respects and to the rel-
evant degrees does not guarantee that M represents the
right target. As Suárez points out [3.23, pp. 233–234],
even a regimented similarity can obtain with no cor-
responding representation. If John dresses up as Pope
Innocent X (and he does so perfectly), then he resem-
bles Velázquez’s portrait of the pope (at least in as far
as the pope himself resembled the portrait). In cases like
these, which Suárez calls mistargeting, a model repre-
sents one target rather than another, despite the fact that
both targets are relevantly similar to the model. Like in
the case of Putnam’s ant, the root cause of the prob-
lem is that the similarity is accidental. In the case of
the ant, the accident occurs at the representation end of
the relation, whereas in the case of John’s dressing up
the accidental similarity occurs at the target end. Both
cases demonstrate that similarity 2 (Definition 3.3) can-
not rule out accidental representation.

Third, there may simply be nothing to be similar to
because some representations represent no actual ob-
ject [3.64, p. 26]. Some paintings represent elves and
dragons, and some models represent phlogiston and the
ether. None of these exist. As Toon points out, this is
a problem in particular for the similarity view [3.49,
pp. 246–247]: models without objects cannot represent
what they seem to represent because in order for two
things to be similar to each other both have to exist. If
there is no ether, then an ether model cannot be similar
to the ether.

It would seem that at least the second problem could
be solved by adding the requirement that M denote T
(as considered, but not endorsed, by Goodman [3.64,
pp. 5–6]). Amending the previous definition accord-
ingly yields:

Definition 3.4 Similarity 3
A scientific model M represents a target T iff M and T
are similar in relevant respects and to the relevant de-
grees andM denotes T .

This account would also solve the problem with reflex-
ivity (and symmetry), because denotation is directional
in a way similarity is not. Unfortunately similarity 3
(Definition 3.4) still suffers from the first and the third
problems. It would still lead to the conflation of mis-
representatios with nonrepresentations because the first
conjunct (similar in the relevant respects) would still
be false. And a nonexistent system cannot be denoted
and so we have to conclude that models of, say, the
ether and phlogiston represent nothing. This seems an
unfortunate consequence because there is a clear sense
in which models without targets are about something.
Maxwell’s writings on the ether provide a detailed and
intelligible account of a number of properties of the
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ether, and these properties are highlighted in the model.
If ether existed then similarity 3 (Definition 3.4) could
explain why these were important by appealing to them
as being relevant for the similarity between an ether
model and its target. But since ether does not, no such
explanation is offered.

A different version of the similarity view sets aside
the moves made in similarity 3 (Definition 3.4) and tries
to improve on similarity 2 (Definition 3.3). The crucial
move is to take the very act of asserting a specific sim-
ilarity between a model and a target as constitutive of
the scientific representation.

Definition 3.5 Similarity 4
A scientific modelM represents a target system T if and
only if a theoretical hypotheses H asserts that M and T
are similar in certain respects and to certain degrees.

This comes close to the view Giere advocated in Ex-
plaining Science [3.71, p. 81] (something like this is
also found in Cartwright ([3.73, pp. 192–193], [3.74,
pp. 261–262]) who appeals to a “loose notion of resem-
blance”; her account of modeling is discussed in more
detail in Sect. 3.6.3). This version of the similarity view
avoids problems with misrepresentation because, being
hypotheses, there is no expectation that the assertions
made in H are true. If they are, then the representa-
tion is accurate (or the representation is accurate to the
extent that they hold). If they are not, then the repre-
sentation is a misrepresentation. It resolves the problem
of mistargeting because hypotheses identify targets be-
fore asserting similarities with M (that is, the task of
picking the right target is now placed in the court of
the hypothesis and is no longer expected to be deter-
mined by the similarity relation). Finally it also resolves
the issue with directionality because H can be under-
stood as introducing a directionality that is not present
in the similarity relation. However, it fails to resolve
the problem with representation without a target. If
there is no ether, no hypotheses can be asserted about
it.

Let us set the issue of nonexistent targets aside for
the moment and have a closer look at the notion of
representation proposed in similarity 4 (Definition 3.5).
A crucial point remains understated in similarity 4
(Definition 3.5). Hypotheses don’t assert themselves;
hypotheses are put forward by those who work with
representations, in the case of models, scientists. So the
crucial ingredient – users – is left implicit in similarity 4
(Definition 3.5).

In a string of recent publications Giere made ex-
plicit the fact that “scientists are intentional agents with
goals and purposes” [3.60, p. 743] and proposed to
build this insight explicitly into an account of epistemic

representation. This involves adopting an agent-based
notion of representation that focuses on “the activity of
representing” [3.60, p. 743]. Analyzing epistemic repre-
sentation in these terms amounts to analyzing schemes
like “S uses X to represent W for purposes P” [3.60,
p. 743], or in more detail [3.51, p. 274]:

“Agents (1) intend; (2) to use model, M; (3) to rep-
resent a part of the world W; (4) for purposes, P. So
agents specify which similarities are intended and
for what purpose.”

This conception of representation had already been
proposed half a century earlier byApostelwhen he urged
the following analysis of model-representation [3.75,
p. 4]:

“Let then R.S;P;M; T/ indicate the main variables
of the modeling relationship. The subject S takes, in
view of the purpose P, the entity M as a model for
the prototype T .”

Including the intentions of model agents in the
definition of scientific representation is now widely
accepted, as we discuss in more detail in Sect. 3.4
(although Rusanen and Lappi disagree with this, and
claim that “the semantics of models as scientific rep-
resentations should be based on the mind-independent
model-world relation” [3.76, p. 317]).

Giere’s proposal, in our own terminology comes
down to:

Definition 3.6 Similarity 5
A scientific model M represents a target system T iff
there is an agent A who uses M to represent a target
system T by proposing a theoretical hypothesisH spec-
ifying a similarity (in certain respects and to certain
degrees) between M and T for purpose P.

This definition inherits from similarity 4 (Defini-
tion 3.5) the resolutions of the problems of direction-
ality, misrepresentation, and mistargeting; and for the
sake of argument we assume that the problem with
nonexistent targets can be resolved in one way or other.

A crucial thing to note about similarity 5 (Defi-
nition 3.6) is that, by invoking an active role for the
purposes and actions of scientists in constituting epis-
temic representation, it marks a significant change in
emphasis for similarity-based accounts. Suárez [3.23,
pp. 226–227], drawing on van Fraassen [3.77] and
Putnam [3.78], defines naturalistic accounts of repre-
sentation as ones where “whether or not representation
obtains depends on facts about the world and does not
in any way answer to the personal purposes, views or in-
terests of enquirers”. By building the purposes of model
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users directly into an answer to the ER-problem, simi-
larity 5 (Definition 3.6) is explicitly not a naturalistic
account (in contrast, for example, to similarity 1 (Def-
inition 3.2)). As noted in Sect. 3.2 we do not demand
a naturalistic account of model-representation (and as
we will see later, many of the more developed answers
to the ER-problem are also not naturalistic accounts).

Does this suggest that similarity 5 (Definition 3.6)
is a successful similarity-based solution to the ER-
problem? Unfortunately not. A closer look at similar-
ity 5 (Definition 3.6) reveals that the role of similarity
has shifted. As far as offering a solution to the ER-
problem is concerned, all the heavy lifting in similar-
ity 5 (Definition 3.6) is done by the appeal to agents
and similarity has in fact become an idle wheel. Giere
implicitly admits this when he writes [3.60, p. 747]:

“How do scientists use models to represent aspects
of the world? What is it about models that makes it
possible to use them in this way? One way, perhaps
the most important way, but probably not the only
way, is by exploiting similarities between a model
and that aspect of the world it is being used to repre-
sent. Note that I am not saying that the model itself
represents an aspect of the world because it is simi-
lar to that aspect. There is no such representational
relationship. [footnote omitted] Anything is similar
to anything else in countless respects, but not any-
thing represents anything else. It is not the model
that is doing the representing; it is the scientist us-
ing the model who is doing the representing.”

But if similarity is not the only way in which
a model can be used as a representation, and if it is the
use by a scientist that turns a model into a representa-
tion (rather than any mind-independent relationship the
model bears to the target), then similarity has become
otiose in a reply to the ER-problem. A scientist could
invoke any relation betweenM and T andM would still
represent T . Being similar in the relevant respects to the
relevant degrees now plays the role either of a represen-
tational style, or of a normative criterion for accurate
representation, rather than of a grounding of represen-
tation. We assess in the next section whether similarity
offers a cogent reply to the issues of style and accuracy.

A further problem is that there seems to be a hidden
circularity in the analysis. As Toon [3.49, pp. 251–252]
points out, having a scientist form a theoretical hypoth-
esis about the similarity relation between two objects A
and B and exploit this similarity for a certain purpose
P is not sufficient for representation. A and B could be
two cars in a showroom and an engineer inspects car A
and then use her knowledge about similarities to make
assertions about B (for instance if both cars are of the
same brand she can infer something about B’s quality

of manufacturing). This, Toon submits, is not a case of
representation: neither car is representational. Yet, if we
delete the expression to represent on the right hand side
of the biconditional in similarity 5 (Definition 3.6), the
resulting condition provides an accurate description of
what happens in the showroom. So the only difference
between the nonrepresentational activity of comparing
cars and representing B by A is that in one case A is
used to represent and in the other it’s only used. So rep-
resentation is explained in terms of to represent, which
is circular. So similarity 5 (Definition 3.6) does not pro-
vide nontrivial conditions for something to be used as
a representation.

One way around the problem would be to replace
to represent by to denote. This, however, would bring
the account close to similarity 3 (Definition 3.4), and it
would suffer from the same problems.

Mäki [3.79] suggested an extension of similarity 5
(Definition 3.6), which he explicitly brands as “a (more
or less explicit) version” of Giere’s.Mäki adds two con-
ditions to Giere’s: the agent uses the model to address
an audience E and adds a commentary C [3.79, p. 57].
The role of the commentary is to specify the nature of
the similarity. This is needed because [3.79, p. 57]:

“representation does not require that all parts of
the model resemble the target in all or just any ar-
bitrary respects, or that the issue of resemblance
legitimately arises in regard to all parts. The relevant
model parts and the relevant respects and degrees of
resemblance must be delimited.”

What these relevant respects and degrees of resem-
blance are depends on the purposes of the scientific
representation in question. These are not determined in
the model as it were, but are pragmatic elements. From
this it transpires that in effect C plays the same role
as that played by theoretical hypotheses in Giere’s ac-
count. Certain aspects ofM are chosen as those relevant
to the representational relationship between M and T .

The addition of an audience, however, is problem-
atic. While models are often shared publicly, this does
not seem to be a necessary condition for the representa-
tional use of a model. There is nothing that precludes
a lone scientist from coining a model M and using
it representationally. That some models are easier to
grasp, and therefore serve as more effective tools to
drive home a point in certain public settings, is an indis-
putable fact, but one that has no bearing on a model’s
status as a representation. The pragmatics of commu-
nication and the semantics of modeling are separate
issues.

The conclusion we draw from this discussion is that
similarity does not offer a viable answer to the ER-
problem.
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3.3.2 Accuracy and Style

Accounting for the possibility of misrepresentation re-
sulted in a shift of the division of labor for the more
developed similarity-based accounts. Rather than be-
ing the relation that grounds representation, similarity
should be considered as setting a standard of accuracy
or as providing an answer to the question of style (or
both). The former is motivated by the observation that
a proposed similarity betweenM and T could be wrong,
and hence if the model user’s proposal does in fact hold
(and M and T are in fact similar in the specified way)
then M is an accurate representation of T . The latter
transpires from the simple observation that a judgment
of accuracy in fact presupposes a choice of respects
in which M and T are claimed to be similar. Simply
proposing that they are similar in some unspecified re-
spect is vacuous. But delineating relevant properties
could potentially provide an answer to the problem of
style. For example, ifM and T are proposed to be simi-
lar with respect to their causal structure, then we might
have a style of causal modeling; if M and T are pro-
posed to be similar with respect to structural properties,
then we might have a style of structural modeling; and
so on and so forth. So the idea is that if M representing
T involves the claim that M and T are similar in a cer-
tain respect, the respect chosen specifies the style of the
representation; and ifM and T are in fact similar in that
respect (and to the specified degree), thenM accurately
represents T within that style.

In this section we investigate both options. But be-
fore delving into the details, let us briefly step back and
reflect on possible constraints on viable answers. Tak-
ing his cue from Lopes’ [3.59] discussion of pictures,
Downes [3.80, pp. 421–422] proposes two constraints
on allowable notions of similarity. The first, which he
calls the independence challenge, requires that a user
must be able to specify the relevant representation-
grounding similarity before engaging in a comparison
between M and T . Similarities that are recognizable
only with hindsight are an unsound foundation of a rep-
resentation. We agree with this requirement, which in
fact is also a consequence of the surrogative reasoning
condition: a model can generate novel hypotheses only
if (at least some of the) similarity claims are not known
only ex post facto.

Downes’ second constraint, the diversity constraint,
is the requirement that the relevant notion of similar-
ity has to be identical in all kinds of representation
and across all representational styles. So all models
must bear the same similarity relations to their targets.
Whatever its merits in the case of pictorial representa-
tion, this observation does not hold water in the case

of scientific representation. Both Giere and Teller have
insisted – rightly, in our view – that there need not be
a substantive sense of similarity uniting all representa-
tions (see also Callender and Cohen [3.26, p. 77] for
a discussion). A proponent of the similarity view is free
to propose different kinds of similarity for different rep-
resentations and is under no obligation to also show that
they are special cases of some overarching conception
of similarity.

We now turn to the issue of style. A first step in the
direction of an understanding of styles is the explicit
analysis of the notion of similarity. Unfortunately the
philosophical literature contains surprisingly little ex-
plicit discussion about what it means for something to
be similar to something else. In many cases similarity
is taken to be primitive, possible worlds semantics be-
ing a prime example. The problem is then compounded
by the fact that the focus is on comparative overall sim-
ilarity instead rather than on similarity in respect and
degrees; for a critical discussion see [3.81]. Where the
issue is discussed explicitly, the standard way of cash-
ing out what it means for an object to be similar to
another object is to require that they co-instantiate prop-
erties. This is the idea that Quine [3.82, pp. 117–118]
and Goodman [3.83, p. 443] had in mind in their influ-
ential critiques of the notion. They note that if all that
is required for two things to be similar is that they co-
instantiate some property, then everything is similar to
everything else, since any pair of objects have at least
one property in common.

The issue of similarity seems to have attracted more
attention in psychology. In fact, the psychological lit-
erature provides formal accounts to capture it directly
in more fully worked out accounts. The two most
prominent suggestions are the geometric and contrast
accounts (see [3.84] for an up-to-date discussion). The
former, associated with Shepard [3.85], assigns objects
a place in a multidimensional space based on values as-
signed to their properties. This space is then equipped
with a metric and the degree of similarity between two
objects is a function of the distance between the points
representing the two objects in that space.

This account is based on the strong assumptions that
values can be assigned to all features relevant to similar-
ity judgments, which is deemed unrealistic. This prob-
lem is supposed to be overcome in Tversky’s contrast
account [3.86]. This account defines a gradated notion
of similarity based on a weighted comparison of prop-
erties. Weisberg ([3.33, Chap. 8], [3.87]) has recently
introduced this account into the philosophy of science
where it serves as the starting point for his so-called
weighted feature matching account of model world-
relations. This account is our primary interest here.
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The account introduces a set � of relevant proper-
ties. Let then �M �� be the set of properties from �
that are instantiated by the modelM; likewise �T is the
set of properties from � instantiated by the target sys-
tem. Furthermore let f be a ranking function assigning
a real number to every subset of �. The simplest ver-
sion of a ranking function is one that assigns to each set
the number of properties in the set, but rankings can be
more complex, for instance by giving important proper-
ties more weight. The level of similarity betweenM and
T is then given by the following equation [3.87, p. 788]
(the notation is slightly amended)

S.M;T/D � f .�M \�T/�˛f .�M��T/

�ˇf .�T��M/ ;

where ˛, ˇ and � are weights, which can in princi-
ple take any value. This equation provides “a similarity
score that can be used in comparative judgments of
similarity” [3.87, p. 788]. The score is determined by
weighing the properties the model and target have in
common against those they do not. (Thus we note that
this account could be seen as a quantitative version of
Hesse’s [3.88] theory of analogy in which properties
that M and T share are the positive analogy and ones
they don’t share are the negative analogy.) In the above
formulation the similarity score S can in principle vary
between any two values (depending on the choice of
the ranking function and the value of the weights). One
can then use standard mathematical techniques to renor-
malize S so that it takes values in the unit interval Œ0; 1�
(these technical moves need not occupy us here and we
refer the reader toWeisberg for details [3.33, Chap. 8]).

The obvious question at this point is how the var-
ious blanks in the account can be filled. First in line
is the specification of a property set �. Weisberg is
explicit that there are no general rules to rely on and
that “the elements of � come from a combination of
context, conceptualization of the target, and theoreti-
cal goals of the scientist” [3.33, p. 149]. Likewise, the
ranking function as well as the values of weighting pa-
rameters depend on the goals of the investigation, the
context, and the theoretical framework in which the sci-
entists operate. Weisberg further divides the elements
of � into attributes and mechanisms. The former are
the “the properties and patterns of a system” while
the latter are the “underlying mechanism[s] that gen-
erates these properties” [3.33, p. 145]. This distinction
is helpful in the application to concrete cases, but for
the purpose of our conceptual discussion it can be set
aside.

Irrespective of these choices, the similarity score
S has a number of interesting features. First, it is
asymmetrical for ˛ ¤ ˇ, which makes room for the pos-

sibility ofM being similar to T to a different degree than
T is similar toM. So S provides the asymmetrical notion
of similarity mentioned in Sect. 3.3.1. Second, S has
a property called maximality: everything is maximally
similar to itself and every other nonidentical object is
equally or less similar. Formally: S.A;A/ � S.A;B/ for
all objects A and B as long as A¤ B [3.33, p. 154].

What does this account contribute to a response to
the question of style? The answer, we think, is that
it has heuristic value but does not provide substantive
account. In fact, stylistic questions stand outside the
proposed framework. The framework can be useful in
bringing questions into focus, but eventually the sub-
stantive stylistic questions concern inclusion criteria for
� (what properties do we focus on?), the weight given
by f to properties (what is the relative importance of
properties?) and the value of the parameters (how sig-
nificant are disagreements between the properties of M
and T?). These questions have to be answered outside
the account. The account is a framework in which ques-
tions can be asked but which does not itself provide
answers, and hence no classification of representational
styles emerges from it.

Some will say that this is old news. Goodman
denounced similarity as “a pretender, an impostor,
a quack” [3.83, p. 437] not least because he thought that
it merely put a label to something unknown without an-
alyzing it. And even some proponents of the similarity
view have insisted that no general characterization of
similarity was possible. Thus Teller submits that [3.52,
p. 402]:

“[t]here can be no general account of similarity, but
there is also no need for a general account because
the details of any case will provide the information
which will establish just what should count as rele-
vant similarity in that case.”

This amounts to nothing less than the admission that
no analysis of similarity (or even different kinds of sim-
ilarity) is possible and that we have to deal with each
case in its own right.

Assume now, for the sake of argument, that the
stylistic issues have been resolved and full specifica-
tions of relevant properties and their relative weights
are available. It would then seem plausible to say that
S.M;T/ provides a degree of accuracy. This reading is
supported by the fact thatWeisberg paraphrases the role
of S.M;T/ as providing “standards of fidelity” [3.33,
p. 147]. Indeed, in response to Parker [3.89], Weisberg
claims that his weighted feature matching account is
supposed to answer the ER-problem and provide stan-
dards of accuracy.

As we have seen above, S.M;T/ is maximal if M
is a perfect replica of T (with respect to the properties
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in �), and the fewer properties M and T share, the less
accurate the representation becomes. This lack of accu-
racy is then reflected in a lower similarity score. This is
plausible and Weisberg’s account is indeed a step for-
ward in the direction of quantifying accuracy.

Weisberg’s account is an elaborate version of the co-
instantiation account of similarity. It improves signifi-
cantly on simple versions, but it cannot overcome that
account’s basic limitations. Niiniluoto distinguishes be-
tween two different kinds of similarities [3.90, pp. 272–
274]: partial identity and likeness (which also feature in
Hesse’s discussion of analogies, see, for instance [3.88,
pp. 66–67]). AssumeM instantiates the relevant proper-
ties P1; : : : ;Pn and T instantiates the relevant properties
Q1; : : : ;Qn. If these properties are identical, i. e., if
Pi D Qi for all iD 1; : : : ; n, then M and T are similar
in the sense of being partially identical. Partial iden-
tity contrasts with what Niiniluoto calls likeness.M and
T are similar in the sense of likeness if the properties
are not identical but similar themselves: Pi is similar
to Qi for all iD 1; : : : ; n. So in likeness the similarity is
located at the level of the properties themselves. For ex-
ample, a red post box and a red London bus are similar
with respect to their color, even if they do not instanti-
ate the exact same shade of red. As Parker [3.89, p. 273]
notes, Weisberg’s account (like all co-instantiation ac-
counts) deals well with partial identity, but has no
systematic place for likeness. To deal with likeness
Weisberg would in effect have to reduce likeness to par-
tial identity by introducing imprecise properties which
encompass the Pi and theQi. Parker [3.89] suggests that
this can be done by introducing intervals in the feature
set, for instance of the form “the value of feature X lies
in the interval Œx�"; xC"�” where " is a parameter spec-
ifying the precision of overlap. To illustrate she uses
Weisberg’s example of the San Francisco bay model
and claims that in order to account for the similarity
between the model and the actual bay with respect to
their Froude number Weisberg has to claim something
like [3.89, p. 273]:

“The Bay model and the real Bay share the prop-
erty of having a Froude number that is within 0:1 of
the real Bay’s number. It is more natural to say that
the Bay model and the real Bay have similar Froude
numbers – similar in the sense that their values dif-
fer by at most 0:1.”

In his response Weisberg accepts this and argues
that he is trying to provide a reductive account of sim-
ilarity that bottoms out in properties shared and those
not shared [3.91, p. 302]. But such interval-valued prop-
erties have to be part of � in order for the formal
account to capture them. This means that another im-
portant decision regarding whether or not M and T are

similar occurs outside of the formal account itself. The
inclusion criteria on what goes into � now not only
has to delineate relevant properties, but, at least for
the quantitative ones, also has to provide an interval
defining when they qualify as similar. Furthermore, it
remains unclear how to account forM and T to be alike
with respect to their qualitative properties. The similar-
ity between genuinely qualitative properties cannot be
accounted for in terms of numerical intervals. This is
a particularly pressing problem for Weisberg, because
he takes the ability to compare models and their targets
with respect to their qualitative properties as a central
desideratum for any account of similarity between the
two [3.33, p. 136].

3.3.3 Problems of Ontology

Another problem facing similarity-based approaches
concerns their treatment of the ontology of models. If
models are supposed to be similar to their targets in the
ways specified by theoretical hypotheses or commen-
taries, then they must be the kind of things that can be
so similar.

Some models are homely physical objects. The
Army Corps of Engineers’ model of the San Francisco
bay is a water basin equipped with pumps to simulate
the action of tidal flows [3.33]; ball and stick models
of molecules are made of metal or wood [3.92]; the
Phillips–Newlyn model of an economy is system of
pipes and reservoirs [3.93]; and model organisms in bi-
ology are animals like worms and mice [3.46]. For mod-
els of this kind similarity is straightforward (at least in
principle) because they are of the same ontological kind
as their respective targets: they are material objects.

But many interesting scientific models are not like
this. Two perfect spheres with a homogeneousmass dis-
tribution that interact only with each other (the Newto-
nian model of the Sun-Earth system) or a single-species
population isolated from its environment and reproduc-
ing at fixed rate at equidistant time steps (the logistic
growth model of a population) are what Hacking aptly
describes as “something you hold in your head rather
than your hands” [3.44, p. 216]. Following Thomson-
Jones [3.94] we call such models nonconcrete models.
The question then is what kind of objects nonconcrete
models are. Giere submits that they are abstract objects
([3.60, p. 747], cf. [3.51, p. 270], [3.71, p. 81]):

“Models in advanced sciences such as physics and
biology should be abstract objects constructed in
conformity with appropriate general principles and
specific conditions.”

The appeal to abstract entities brings a number of
difficulties with it. The first is that the class of abstract
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objects is rather large. Numbers and other objects of
pure mathematics, classes, propositions, concepts, the
letter A, and Dante’s Inferno are abstract objects [3.95],
and Hale [3.96, pp. 86–87] lists no less than 12 differ-
ent possible characterizations of abstract objects. At the
very least this list shows that there is great variety in
abstract objects and classifying models as abstract ob-
jects adds little specificity to an account of what models
are. Giere could counter that he limits attention to those
abstract objects that possess “all and only the character-
istics specified in the principles” [3.60, p. 745], where
principles are general rules like Newton’s laws of mo-
tion. He further specifies that he takes “abstract entities
to be human constructions” and that “abstract models
are definitely not to be identified with linguistic entities
such as words or equations” [3.60, p. 747]. While this
narrows down the choices somehow, it still leaves many
options and ultimately the ontological status of models
in a similarity account remains unclear.

Giere fails to expand on this ontological issue for
a reason: he dismisses the problem as one that philoso-
phers of science can set aside without loss. He voices
skepticism about the view that philosophers of science
“need a deeper understanding of imaginative processes
and of the objects produced by these process” [3.97,
p. 250] or that “we need say much more [. . . ] to get on
with the job of investigating the functions of models in
science” [3.97].

We remain unconvinced about this skepticism, not
least because there is an obvious yet fundamental issue
with abstract objects. No matter how the above issues
are resolved (and irrespective of whether they are re-
solved at all), at the minimum it is clear that models
are abstract in the sense that they have no spatiotem-
poral location. Teller [3.52, p. 399] and Thomson-
Jones [3.98] supply arguments suggesting that this
alone causes serious problems for the similarity ac-
count. The similarity account demands that models can
instantiate properties and relations, since this is a nec-
essary condition on them being similar to their targets.
In particular, it requires that models can instantiate
the properties and relations mentioned in theoretical
hypotheses or commentaries. But such properties and
relations are typically physical. And if models have no
spatiotemporal location, then they do not instantiate any
such properties or relations. Thomson-Jones’ example
of the idealized pendulum model makes this clear. If
the idealized pendulum is abstract then it is difficult to
see how to make sense of the idea that it has a length, or
a mass, or an oscillation period of any particular time.

An alternative suggestion due to Teller [3.52] is
that we should instead say that whilst “concrete ob-
jects HAVE properties [. . . ] properties are PARTS of
models” [3.52, p. 399] (original capitalization). It is not

entirely clear what Teller means by this, but our guess
is that he would regard models as bundles of proper-
ties. Target systems, as concrete objects, are the sorts
of things that can instantiate properties delineated by
theoretical hypotheses. Models, since they are abstract,
cannot. But rather than being objects instantiating prop-
erties, a model can be seen as a bundle of properties.
A collection of properties is an abstract entity that is
the sort of thing that can contain the properties speci-
fied by theoretical hypotheses as parts. The similarity
relation between models and their targets shifts from
the co-instantiation of properties, to the idea that tar-
gets instantiate (relevant) properties that are parts of the
model. With respect to what it means for a model to be
a bundle of properties Teller claims that the “[d]etails
will vary with ones account of instantiation, of proper-
ties and other abstract objects, and of the way properties
enter into models” [3.52].

But as Thompson-Jones [3.98, pp. 294–295] notes,
it is not obvious that this suggestion is an improve-
ment on Giere’s abstract objects. A bundle view incurs
certain metaphysical commitments, chiefly the exis-
tence of properties and their abstractness, and a bundle
view of objects, concrete or abstract, faces a number of
serious problems [3.99]. One might speculate that ad-
dressing these issues would push Teller either towards
the kind of more robust account of abstract objects that
he endeavored to avoid, or towards a fictionalist under-
standing of models.

The latter option has been discussed by Giere,
who points out that a natural response to Teller’s and
Thomson-Jones’ problem is to regard models as akin to
imaginary or fictional systems of the sort presented in
novels and films. It seems true to say that Sherlock is
a smoker, despite the fact that Sherlock an imaginary
detective, and smoking is a physical property. At times,
Giere seems sympathetic to this view. He says [3.97,
p. 249]:

“it is widely assumed that a work of fiction is a cre-
ation of human imagination [. . . ] the same is true of
scientific models. So, ontologically, scientific mod-
els and works of fiction are on a par. They are both
imaginary constructs.”

And he observes that [3.51, p. 278]:

“novels are commonly regarded as works of imagi-
nation. That, ontologically, is how we should think
of abstract scientific models. They are creations of
scientists imaginations. They have no ontological
status beyond that.”

However, these seem to be occasional slips and he
recently positioned himself as an outspoken opponent
of any approach to models that likens them to literary
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fiction. We discuss these approaches as well as Giere’s
criticisms of them in Sect. 3.6.

In sum, the similarity view is yet to be equipped
with a satisfactory account of the ontology of models.

3.4 The Structuralist Conception

The structuralist conception of model-representation
originated in the so-called semantic view of theories
that came to prominence in the second half of the 20th
century (Suppes [3.100], van Fraassen [3.101], and Da
Costa and French [3.102] provide classical statements
of the view; Byerly [3.103], Chakravartty [3.104],
Klein [3.105] and Portides [3.106, 107] provide critical
discussions). The semantic view was originally pro-
posed as an account of theory structure rather than
model-representation. The driving idea behind the po-
sition is that scientific theories are best thought of
as collections of models. This invites the questions:
What are these models, and how do they represent
their target systems? Defenders of the semantic view of
theories take models to be structures, which represent
their target systems in virtue of there being some kind
of mapping (isomorphism, partial isomorphism, homo-
morphism, . . . ) between the two. (It is worth noting
that Giere, whose account of scientific representation
we discussed in the previous section, is also associated
with the semantic view, despite not subscribing to either
of these positions.)

This conception has two prima facie advantages.
The first advantage is that it offers a straightforward
answer to the ER-problem, and one that accounts for
surrogative reasoning: the mappings between the model
and the target allow scientists to convert truths found
in the model into claims about the target system. The
second advantage concerns the applicability of math-
ematics. There is time-honored position in the phi-
losophy of mathematics that sees mathematics as the
study of structures; see, for instance, Resnik [3.108] and
Shapiro [3.109]. It is a natural move for the scientific
structuralist to adopt this point of view, which, without
further ado, provides a neat explanation of how mathe-
matics is used in scientific modeling.

3.4.1 Structures and the Problem
of Ontology

Almost anything from a concert hall to a kinship sys-
tem can be referred to as a structure. So the first task
for a structuralist account of representation is to artic-
ulate what notion of structure it employs. A number of
different notions of structure have been discussed in the
literature (for a review see Thomson-Jones [3.110]), but
by far the most common and widely used is the notion

of structure one finds in set theory and mathematical
logic. A structure S in that sense (sometimes mathemat-
ical structure or set-theoretic structure) is a composite
entity consisting of the following: a nonempty set U
of objects called the domain (or universe) of the struc-
ture and a nonempty indexed set R of relations on
U. With the exception of the caveat below regarding
interpretation functions, this definition of structure is
widely used in mathematics and logic; see for instance
Machover [3.111, p. 149], Hodges [3.112, p. 2], and
Rickart [3.113, p. 17]. It is convenient to write these
as SD hU;Ri, where h ; i denotes an ordered tuple.
Sometimes operations are also included in the definition
of a structure. While convenient in some applications,
operations are redundant because operations reduce
to relations (see Boolos and Jeffrey [3.114, pp. 98–
99]).

It is important to be clear on what we mean by ob-
ject and relation in this context.AsRussell [3.115, p. 60]
points out, in defining the domain of a structure it is
irrelevant what the objects are. All that matters from
a structuralist point of view is that there are so and so
many of them. Whether the object is a desk or a planet
is irrelevant. All we need are dummies or placehold-
ers whose only property is objecthood. Similarly, when
defining relations one disregards completely what the
relation is in itself. Whether we talk about being the
mother of or standing to the left of is of no concern
in the context of a structure; all that matters is between
which objects it holds. For this reason, a relation is spec-
ified purely extensionally: as a class of ordered n-tuples.
The relation literally is nothing over and above this
class. So a structure consists of dummy objects between
which purely extensionally defined relations hold.

Let us illustrate this with an example. Consider the
structure with the domain U D fa; b; cg and the fol-
lowing two relations: r1 D fag and r2 D fha; bi; hb; ci;
ha; cig. Hence R consists of r1 and r2, and the structure
itself is SD hU;Ri. This is a structure with a three-
object domain endowed with a monadic property and
a transitive relation. Whether the objects are books or
iron rods is of no relevance to the structure; they could
be literally anything one can think of. Likewise r1 could
be literally any monadic property (being green, being
waterproof, etc.) and r2 could be any (irreflexive) tran-
sitive relation (larger than, hotter than, more expensive
than, etc.).
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It is worth pointing out that this use of structure dif-
fers from the use one sometimes finds in logic, where
linguistic elements are considered part of the model as
well. Specifically, over and above SD hU;Ri, a struc-
ture is also taken to include a language (sometimes
called a signature) L, and an interpretation function
([3.112, Chap. 1] and [3.116, pp. 80–81]). But in the
context of the accounts discussed in this section, a struc-
ture is the ordered pair SD hU;Ri as introduced above
and so we disregard this alternative use of structure.

The first basic posit of the structuralist theory of
representation is that models are structures in the above
sense (the second is that models represent their targets
by being suitably morphic to them; we discuss mor-
phisms in the next subsection). Suppes has articulated
this stance clearly when he declared that “the meaning
of the concept of model is the same in mathematics
and the empirical sciences” [3.117, p. 12]. Likewise,
van Fraassen posits that a “scientific theory gives us
a family of models to represent the phenomena”, that
“[t]hese models are mathematical entities, so all they
have is structure [. . . ]” [3.118, pp. 528–529] and that
therefore [3.118, p. 516]

“[s]cience is [. . . ] interpreted as saying that the enti-
ties stand in relations which are transitive, reflexive,
etc. but as giving no further clue as to what those
relations are.”

Redhead submits that “it is this abstract structure as-
sociated with physical reality that science aims, and to
some extent succeeds, to uncover [. . . ]” [3.119, p. 75].
Finally, French and Ladyman affirm that “the specific
material of the models is irrelevant; rather it is the struc-
tural representation [. . . ] which is important” [3.120,
p. 109]. Further explicit statements of this view are of-
fered by: Da Costa and French [3.121, p. 249], Suppes
([3.122, p. 24], [3.123, Chap. 2]) and van Fraassen
([3.101, pp. 43, 64], [3.118, pp. 516, 522], [3.124,
p. 483], [3.125, p. 6]).

These structuralist accounts have typically been
proposed in the framework of the so-called seman-
tic view of theories. There are differences between
them, and formulations vary from author to author.
However, as Da Costa and French [3.126] point out,
all these accounts share a commitment to analyz-
ing models as structures. So we are presented with
a clear answer to the problem of ontology: models
are structures. The remaining issue is what structures
themselves are. Are they platonic entities, equivalence
classes, modal constructs, or yet something else? This
is a hotly debated issue in the philosophy of logic
and mathematics; for different positions see for in-
stance Dummett [3.127, 295ff.], Hellman [3.128, 129],
Redhead [3.119], Resnik [3.108], and Shapiro [3.109].

But philosophers of science need not resolve this issue
and can pass off the burden of explanation to philoso-
phers of mathematics. This is what usually happens, and
hence we don’t pursue this matter further.

An extension of the standard conception of struc-
ture is the so-called partial structures approach (for
instance, Da Costa and French [3.102] and Bueno
et al. [3.130]). Above we defined relations by specify-
ing between which tuples it holds. This naturally allows
a sorting of all tuples into two classes: ones that belong
to the relation and ones that don’t. The leading idea
of partial structures is to introduce a third option: for
some tuples it is indeterminate whether or not they be-
long to the relation. Such a relation is a partial relation.
A structure with a set R containing partial relations is
a partial structure (formal definitions can be found in
references given above). Partial structures make room
for a process of scientific investigation where one be-
gins not knowingwhether a tuple falls under the relation
and then learns whether or not it does.

Proponents of that approach are more guarded as
regards the ontology of models. Bueno and French em-
phasize that “advocates of the semantic account need
not be committed to the ontological claim that mod-
els are structures” [3.53, p. 890] (original emphasis).
This claim is motivated by the idea that the task for
philosophers of science is to represent scientific the-
ories and models, rather than to reason about them
directly. French [3.131] makes it explicit that accord-
ing to his account of the semantic view of theories,
a scientific theory is represented as a class of models,
but should not be identified with that class. Moreover,
a class of models is just one way of representing a the-
ory; we can also use an intrinsic characterization and
represent the same theory as a set of sentences in order
to account for how they can be objects of our epistemic
attitudes [3.132].

He therefore adopts a quietist position with respect
to what a theory or a model is, declining to answer the
question [3.131, 133]. There are thus two important no-
tions of representation at play: representation of targets
by models, which is the job of scientists, and represen-
tation of theories and models by structures, which is
the job of philosophers of science. The question for this
approach then becomes whether or not the structuralist
representation of models and epistemic representation –
as partial structures and morphisms that hold between
them – is an accurate or useful one. And the concerns
raised below remain when translated into this context as
well.

There is an additional question regarding the cor-
rect formal framework for thinking about models in
the structuralist position. Landry [3.134] argues that in
certain contexts group, rather than set, theory should
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be used when talking about structures and morphisms
between them, and Halvorson [3.135, 136] argues that
theories should be identified with categories rather than
classes or sets. Although these discussions highlight
important questions regarding the nature of scientific
theories, the question of how individual models repre-
sent remains unchanged. Halvorson still takes individ-
ual models to be set-theoretic structures. And Landry’s
paper is not an attempt to reframe the representa-
tional relationship between models and their targets
(see [3.137] for her skepticism regarding how struc-
turalism deals with this question). Thus, for reasons of
simplicity we will focus on the structuralist view that
identifies models with set-theoretic structures through-
out the rest of this section.

3.4.2 Structuralism and the ER-Problem

Themost basic structuralist conception of scientific rep-
resentation asserts that scientific models, understood as
structures, represent their target systems in virtue of be-
ing isomorphic to them. Two structures Sa D hUa;Rai
and Sb D hUb;Rbi are isomorphic iff there is a map-
ping f WUa! Ub such that (i) f is one-to-one (bijective)
and (ii) f preserves the system of relations in the fol-
lowing sense: The members a1; : : : ; an of Ua satisfy
the relation ra of Ra iff the corresponding members
b1 D f .a1/ ; : : : ; bn D f .an/ ofUb satisfy the relation rb
of Rb, where rb is the relation corresponding to ra (for
difficulties in how to cash out this notion of correspon-
dence without reference to an interpretation function
see Halvorson [3.135] and Glymour [3.138]).

Assume now that the target system T exhibits the
structure ST D hUT;RTi and the model is the structure
SM D hUM;RMi. Then the model represents the target
iff it is isomorphic to the target:

Definition 3.7 Structuralism 1
A scientific model M represents its target T iff SM is
isomorphic to ST.

This view is articulated explicitly by Ubbink, who
posits that [3.139, p. 302]

“a model represents an object or matter of fact in
virtue of this structure; so an object is a model [. . . ]
of matters of fact if, and only if, their structures are
isomorphic.”

Views similar to Ubbink’s seem operable in many
versions of the semantic view. In fairness to propo-
nents of the semantic view it ought to be pointed out,
though, that for a long time representation was not the
focus of attention in the view and the attribution of
(something like) structuralism 1 (Definition 3.7) to the

semantic view is an extrapolation. Representation be-
came a much-debated topic in the first decade of the
21st century, and many proponents of the semantic view
then either moved away from structuralism 1 (Defi-
nition 3.7), or pointed out that they never held such
a view. We turn to more advanced positions shortly, but
to understand what motivates such positions it is helpful
to understand why structuralism 1 (Definition 3.7) fails.

An immediate question concerns the target end
structure ST. At least prima facie target systems
aren’t structures; they are physical objects like planets,
molecules, bacteria, tectonic plates, and populations of
organisms. An early recognition that the relation be-
tween targets and structures is not straightforward can
be found in Byerly, who emphasizes that structures are
abstracted from objects [3.103, pp. 135–138]. The re-
lation between structures and physical targets is indeed
a serious question and we will return to it in Sect. 3.4.4.
In this subsection we grant the structuralist the assump-
tion that target systems are (or at least have) structures.

The first and most obvious problem is the same as
with the similarity view: isomorphism is symmetrical,
reflexive, and transitive, but epistemic representation
isn’t. This problem could be addressed by replacing iso-
morphism with an alternative mapping. Bartels [3.140],
Lloyd [3.141], and Mundy [3.142] suggest homomor-
phism; van Fraassen [3.36, 101, 118] and Redhead iso-
morphic embeddings [3.119]; advocates of the partial
structures approach prefer partial isomophisms [3.102,
120, 121, 143–145]; and Swoyer [3.25] introduces what
he calls �=�� morphisms. We refer to these collec-
tively as morphisms.

This solves some, but not all problems. While many
of these mappings are asymmetrical, they are all still
reflexive, and at least some of them are also transitive.
But even if these formal issues could be resolved in
one way or another, a view based on structural map-
pings would still face other serious problems. For ease
of presentation we discuss these problems in the con-
text of the isomorphism view; mutatis mutandis other
formal mappings suffer from the same difficulties (For
detailed discussions of homomorphism and partial iso-
morphism see Suárez [3.23, pp. 239-241] and Pero and
Suárez [3.146]; Mundy [3.142] discusses general con-
straints one may want to impose on morphisms.)

Like similarity, isomorphism is too inclusive: not
all things that are isomorphic represent each other. In
the case of similarity this case was brought home by
Putnam’s thought experiment with the ant crawling on
the beach; in the case of isomorphism a look at the
history of science will do the job. Many mathemati-
cal structures have been discovered and discussed long
before they have been used in science. Non-Euclidean
geometries were studied by mathematicians long before
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Einstein used them in the context of spacetime theo-
ries, and Hilbert spaces were studied by mathematicians
prior to their use in quantum theory. If representa-
tion was nothing over and above isomorphism, then
we would have to conclude that Riemann discovered
general relativity or that that Hilbert invented quantum
mechanics. This is obviously wrong. Isomorphism on
its own does not establish representation [3.20, p. 10].

Isomorphism is more restrictive than similarity:
not everything is isomorphic to everything else. But
isomorphism is still too abundant to correctly identify
the extension of a representation (i. e., the class of
systems it represents), which gives rise to a version of
the mistargeting problem. The root of the difficulties is
that the same structures can be instantiated in different
target systems. The 1=r2 law of Newtonian gravity is
also the mathematical skeleton of Coulomb’s law of
electrostatic attraction and the weakening of sound
or light as a function of the distance to the source.
The mathematical structure of the pendulum is also
the structure of an electric circuit with condenser
and solenoid (a detailed discussion of this case is
provided by Kroes [3.147]). Linear equations are
ubiquitous in physics, economics and psychology.
Certain geometrical structures are instantiated by many
different systems; just think about how many spherical
things we find in the world. This shows that the same
structure can be exhibited by more than one target
system. Borrowing a term from the philosophy of mind,
one can say that structures are multiply realizable. If
representation is explicated solely in terms of isomor-
phism, then we have to conclude that, say, a model of
a pendulum also represents an electric circuit. But this
seems wrong. Hence isomorphism is too inclusive to
correctly identify a representation’s extension.

One might try to dismiss this point as an artifact of
a misidentification of the target. Van Fraassen [3.101,
p. 66], mentions a similar problem under the heading
of “unintended realizations” and then expresses confi-
dence that it will “disappear when we look at larger
observable parts of the world”. Even if there are mul-
tiply realizable structures to begin with, they vanish as
science progresses and considers more complex sys-
tems because these systems are unlikely to have the
same structure. Once we focus on a sufficiently large
part of the world, no two phenomena will have the same
structure. There is a problem with this counter, how-
ever. To appeal to future science to explain how models
work today seems unconvincing. It is a matter of fact
that we currently have models that represent electric
circuits and sound waves, and we do not have to await
future science providing us with more detailed accounts
of a phenomenon to make our models represent what
they actually already do represent.

As we have seen in the last section, a misrepresen-
tation is one that portrays its target as having features
it doesn’t have. In the case of an isomorphism account
of representation this presumably means that the model
portrays the target as having structural properties that
it doesn’t have. However, isomorphism demands iden-
tity of structure: the structural properties of the model
and the target must correspond to one another exactly.
A misrepresentation won’t be isomorphic to the tar-
get. By the lights of structuralism 1 (Definition 3.7)
it is therefore is not a representation at all. Like sim-
ple similarity accounts, structuralism 1 (Definition 3.7)
conflates misrepresentation with nonrepresentation.

Muller [3.148, p. 112] suggests that this problem
can be overcome in a two-stage process: one first
identifies a submodel of the model, which in fact is iso-
morphic to at least a part of the target. This reduced
isomorphism establishes representation. One then con-
structs “a tailor-made morphism on a case by case
basis” [3.148, p. 112] to account for accurate represen-
tation. Muller is explicit that this suggestion presup-
poses that there is “at least one resemblance” [3.148,
p. 112] between model and target because “other-
wise one would never be called a representation of
the other” [3.148, p. 112]. While this may work in
some cases, it is not a general solution. It is not clear
whether all misrepresentations have isomorphic sub-
models.Models that are gross distortions of their targets
(such as the liquid drop model of the nucleus or the lo-
gistic model of a population) may well not have such
submodels. More generally, as Muller admits, his solu-
tion “precludes total misrepresentation” [3.148, p. 112].
So in effect it just limits the view that representation
coincides with correct representation to a submodel.
However, this is too restrictive a view of representation.
Total misrepresentations may be useless, but they are
representations nevertheless.

Another response refers to the partial structures ap-
proach and emphasizes that partial structures are in
fact constructed to accommodate a mismatch between
model and target and are therefore not open to this ob-
jection [3.53, p. 888]. It is true that the partial structures
framework has a degree of flexibility that the standard
view does not. However, we doubt that this flexibil-
ity stretches far enough. While the partial structure
approach deals successfully with incomplete represen-
tations, it does not seem to deal well with distortive
representations (we come back to this point in the next
subsection). So the partial structures approach, while
enjoying an advantage over the standard approach, is
nevertheless not yet home and dry.

Like the similarity account, structuralism 1 (Defini-
tion 3.7) has a problem with nonexistent targets because
no model can be isomorphic to something that doesn’t
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exist. If there is no ether, a model can’t be isomorphic to
it. Hence models without target cannot represent what
they seem to represent.

Most of these problems can be resolved by making
moves similar to the ones that lead to similarity 5 (Defi-
nition 3.6): introduce agents and hypothetical reasoning
into the account of representation. Going through the
motions one finds:

Definition 3.8 Structuralism 2
A scientific model M represents a target system T iff
there is an agent A who uses M to represent a target
system T by proposing a theoretical hypothesisH spec-
ifying an isomorphism between SM and ST.

Something similar to this was suggested by Adams
[3.149, p. 259] who appeals to the idea that physical
systems are the intended models of a theory in order
to differentiate them from purely mathematical models
of a theory. This suggestion is also in line with van
Fraassen’s recent pronouncements on representation.
He offers the following as the Hauptstatz of a theory
of representation: “there is no representation except in
the sense that some things are used, made, or taken, to
represent things as thus and so” [3.36, p. 23]. Likewise,
Bueno submits that “representation is an intentional act
relating two objects” [3.150, p. 94] (original emphasis),
and Bueno and French point out that using one thing to
represent another thing is not only a function of (partial)
isomorphism but also depends on pragmatic factors
“having to do with the use to which we put the relevant
models” [3.53, p. 885]. This, of course, gives up on the
idea of an account that reduces representation to intrin-
sic features of models and their targets. At least one
extra element, the model user, also features in whatever
relation is supposed to constitute the representational
relationship between M and T . In a world with no
agents, there would be no scientific representation.

This seems to be the right move. Like similarity 5
(Definition 3.6), structuralism 2 (Definition 3.8) ac-
counts for the directionality of representation and has
no problem with misrepresentation. But, again as in the
case of similarity 5 (Definition 3.6), this is a Pyrrhic
victory as the role of isomorphism has shifted. The cru-
cial ingredient is the agent’s intention and isomorphism
has in fact become either a representational style or
normative criterion for accurate representation. Let us
now assess how well isomorphism fares as a response
to these problems.

3.4.3 Accuracy, Style and Demarcation

The problem of style is to identify representational
styles and characterize them. Isomorphism offers an

obvious response to this challenge: one can represent
a system by coming up with a model that is structurally
isomorphic to it. We call this the isomorphism-style.
This style also offers a clear-cut condition of accuracy:
the representation is accurate if the hypothesized iso-
morphism holds; it is inaccurate if it doesn’t.

This is a neat answer. The question is what status it
has vis-à-vis the problem of style. Is the isomorphism-
style merely one style among many other styles which
are yet to be identified, or is it in some sense privileged?
The former is uncontentious. However, the emphasis
many structuralists place on isomorphism suggests that
they do not regard isomorphism as merely one way
among others to represent something. What they seem
to have in mind is the stronger claim that a representa-
tion must be of that sort, or that the isomorphism-style
is the only acceptable style.

This claim seems to conflict with scientific practice.
Many representations are inaccurate in someway. Aswe
have seen above, partial structures are well equipped to
deal with incomplete representations. However, not all
inaccuracies are due to something being left out. Some
models distort, deform and twist properties of the target
in ways that seem to undercut isomorphism. Somemod-
els in statistical mechanics have an infinite number of
particles and the Newtonian model of the solar system
represents the sun as perfect sphere where it in reality is
fiery ball with no well-defined surface at all. It is at best
unclear how isomorphism, partial or otherwise, can ac-
count for these kinds of idealizations. From an isomor-
phism perspective all one can say about such idealiza-
tions is that they are failed isomorphism representations
(or isomorphism misrepresentations). This is rather un-
informative. One might try to characterize these ideal-
izations by looking at how they fail to be isomorphic to
their targets, but we doubt that this is going very far. Un-
derstanding how distortive idealizations work requires
a positive characterization of them, and we cannot see
how such a characterization could be given within the
isomorphism framework. So one has to recognize styles
of representation other than isomorphism.

This raises that question of whether other mappings
such as homomorphisms or embeddings would fit the
bill. They would, we think, make valuable additions to
the list of styles, but they would not fill all gaps. Like
isomorophism, these mappings are not designed to ac-
commodate distortive idealizations, and hence a list of
styles that includes them still remains incomplete.

Structuralism’s stand on the demarcation problem is
by and large an open question. Unlike similarity, which
has been widely discussed across different domains,
isomorphism is tied closely to the formal framework of
set theory, and it has been discussed only sparingly out-
side the context of the mathematized sciences. An ex-
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ception is French, who discusses isomorphism accounts
in the context of pictorial representation [3.35]. He
discusses in detail Budd’s [3.151] account of pictorial
representation and points out that it is based on the no-
tion of a structural isomorphism between the structure
of the surface of the painting and the structure of the
relevant visual field. Therefore representation is the per-
ceived isomorphism of structure [3.35, pp. 1475–1476]
(this point is reaffirmed by Bueno and French [3.53,
pp. 864–865]; see Downes [3.80, pp. 423–425] for
a critical discussion). In a similar vein, Bueno claims
that the partial structures approach offers a framework
in which different representations – among them “out-
puts of various instruments, micrographs, templates,
diagrams, and a variety of other items” [3.150, p. 94] –
can be accommodated. This would suggest that an iso-
morphism account of representation at least has a claim
to being a universal account covering representations
across different domains.

This approach faces a number of questions. First,
neither a visual field nor a painting is a structure, and
the notion of there being an isomorphism in the set the-
oretic sense between the two at the very least needs
unpacking. The theory is committed to the claim that
paintings and visual fields have structures, but, as we
will see in the next subsection, this claim faces serious
issues. Second, Budd’s theory is only one among many
theories of pictorial representation, and most alterna-
tives do not invoke isomorphism. So there is question
whether a universal claim can be built on Budd’s theory.
In fact, there is even a question about isomorphism’s
universality within scientific representation. Nonmath-
ematized sciences work with models that aren’t struc-
tures. Godfrey-Smith [3.152], for instance, argues that
models in many parts of biology are imagined concrete
objects. There is a question whether isomorphism can
explain how models of that kind represent.

This points to a larger issue. The structuralist view is
a rational reconstruction of scientific modeling, and as
such it has some distance from the actual practice. Some
philosophers have worried that this distance is too large
and that the view is too far removed from the actual
practice of science to be able to capture what matters
to the practice of modeling (this is the thrust of many
contributions to [3.11]; see also [3.73]). Although some
models used by scientists may be best thought of as set
theoretic structures, there are many where this seems to
contradict how scientists actually talk about, and reason
with, their models. Obvious examples include physical
models like the San Francisco bay model [3.33], but
also systems such as the idealized pendulum or imagi-
nary populations of interbreeding animals. Such models
have the strange property of being concrete-if-real and
scientists talk about them as if they were real systems,

despite the fact that they are obviously not. Thomson-
Jones [3.98] dubs this face value practice, and there is
a question whether structuralism can account for that
practice.

3.4.4 The Structure of Target Systems

Target systems are physical objects: atoms, planets,
populations of rabbits, economic agents, etc. Isomor-
phism is a relation that holds between two structures
and claiming that a set theoretic structure is isomorphic
to a piece of the physical world is prima facie a category
mistake. By definition, all of the mappings suggested –
isomorphism, partial isomorphism, homomorphism, or
isomorphic embedding – only hold between two struc-
tures. If we are to make sense of the claim that the
model is isomorphic to its target we have to assume that
the target somehow exhibits a certain structure ST D
hUT;RTi. But what does it mean for a target system –
a part of the physical world – to possess a structure, and
where in the target system is the structure located?

The two prominent suggestions in the literature are
that data models are the target end structures repre-
sented by models, and that structures are, in some sense,
instantiated in target systems. The latter option comes
in three versions. The first version is that a structure is
ascribed to a system; the second version is that systems
instantiate structural universals; and the third version
claims that target systems simply are structures. We
consider all suggestions in turn.

What are data models? Data are what we gather in
experiments. When observing the motion of the moon,
for instance, we choose a coordinate system and ob-
serve the position of the moon in this coordinate system
at consecutive instants of time. We then write down
these observations. The data thus gathered are called
the raw data. The raw data then undergo a process of
cleansing, rectification and regimentation: we throw
away data points that are obviously faulty, take into
consideration what the measurement errors are, take
averages, and usually idealize the data, for instance by
replacing discrete data points by a continuous function.
Often, although not always, the result is a smooth curve
through the data points that satisfies certain theoretical
desiderata (Harris [3.153] and van Fraassen [3.36,
pp. 166–168] elaborate on this process). These resulting
data models can be treated as set theoretic structures.
In many cases the data points are numeric and the data
model is a smooth curve through these points. Such
a curve is a relation over Rn (for some n), or subsets
thereof, and hence it is structure in the requisite sense.

Suppes [3.122] was the first to suggested that data
models are the targets of scientific models: models
don’t represent parts of the world; they represent data
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structures. This approach has then been adopted by van
Fraassen, when he declares that “[t]he whole point of
having theoretical models is that they should fit the
phenomena, that is, fit the models of data” [3.154,
p. 667]. He has defended this position numerous times
over the years ([3.77, p. 164], [3.101, p. 64], [3.118,
p. 524], [3.155, p. 229] and [3.156, p. 271]) including
in his most recent book on representation [3.36,
pp. 246, 252]. So models don’t represent planets, atoms
or populations; they represent data that are gathered
when performing measurements on planets, atoms or
populations.

This revisionary point of view has met with stiff
resistance. Muller articulates the unease about this po-
sition as follows [3.148, p. 98]:

“the best one could say is that a data structure D
seems to act as simulacrum of the concrete actual
being B [. . . ] But this is not good enough. We don’t
want simulacra. We want the real thing. Come on.”

Muller’s point is that science aims (or at least has
to aim) to represent real systems in the world and not
data structures. Van Fraassen calls this the “loss of
reality objection” [3.36, p. 258] and accepts that the
structuralist must ensure that models represent target
systems, rather than finishing the story at the level of
data. In his [3.36] he addresses this issue in detail and
offers a solution. We discuss his solution below, but
before doing so we want to articulate the objection in
more detail. To this end we briefly revisit the discussion
about phenomena and data which took place in the
1980s and 1990s.

Bogen and Woodward [3.157], Woodward [3.158],
and more recently (and in a somewhat different guise)
Teller [3.159], introduced the distinction between phe-
nomena and data and argue that models represent phe-
nomena, not data. The difference is best introduced
with an example: the discovery of weak neutral cur-
rents [3.157, pp. 315–318]. What the model at stake
consists of is particles: neutrinos, nucleons, and the Z0

particle, along with the reactions that take place be-
tween them. (The model we are talking about here is
not the so-called standard model of elementary parti-
cles as a whole. Rather, what we have in mind is one
specific model about the interaction of certain particles
of the kind one would find in a theoretical paper on this
experiment.) Nothing of that, however, shows in the rel-
evant data. CERN (Conseil Européen pour la Recherche
Nucléaire) in Geneva produced 290 000 bubble cham-
ber photographs of which roughly 100 were considered
to provide evidence for the existence of neutral cur-
rents. The notable point in this story is that there is no
part of the model (provided by quantum field theory)
that could be claimed to be isomorphic to these pho-

tographs. Weak neutral currents are the phenomenon
under investigation; the photographs taken at CERN
are the raw data, and any summary one might con-
struct of the content of these photographs would be
a data model. But it’s weak neutral currents that oc-
cur in the model; not any sort of data we gather in an
experiment.

This is not to say that these data have nothing to do
with the model. The model posits a certain number of
particles and informs us about the way in which they in-
teract both with each other and with their environment.
Using this knowledge we can place them in a certain
experimental context. The data we then gather in an ex-
periment are the product of the elements of the model
and of the way in which they operate in that context.
Characteristically this context is one that we are able
to control and about which we have reliable knowledge
(knowledge about detectors, accelerators, photographic
plates and so on). Using this and the model we can de-
rive predictions about what the outcomes of an experi-
ment will be. But, and this is the salient point, these pre-
dictions involve the entire experimental setup and not
only the model and there is nothing in the model itself
with which one could compare the data. Hence, data are
highly contextual and there is a big gap between observ-
able outcomes of experiments and anything one might
call a substructure of a model of neutral currents.

To underwrite this claim Bogen and Woodward
notice that parallel to the research at CERN, the
National Accelerator Laboratory (NAL) in Chicago
also performed an experiment to detect weak neutral
currents, but the data obtained in that experiment were
quite different. They consisted of records of patterns of
discharge in electronic particle detectors. Though the
experiments at CERN and at NAL were totally different
and as a consequence the data gathered had nothing in
common, they were meant to provide evidence for the
same theoretical model. But the model, to reiterate the
point, does not contain any of these contextual factors.
It posits certain particles and their interaction with
other particles, not how detectors work or what read-
ings they show. That is, the model is not idiosyncratic
to a special experimental context in the way the data
are and therefore it is not surprising that they do not
contain a substructure that is isomorphic to the data.
For this reason, models represent phenomena, not data.

It is difficult to give a general characterization of
phenomena because they do not belong to one of the tra-
ditional ontological categories [3.157, p. 321]. In fact,
phenomena fall into many different established cat-
egories, including particular objects, features, events,
processes, states, states of affairs, or they defy classi-
fication in these terms altogether. This, however, does
not detract from the usefulness of the concept of a phe-
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nomenon because specifying one particular ontological
category to which all phenomena belong is inessen-
tial to the purpose of this section. What matters to the
problem at hand is the distinctive role they play in con-
nection with representation.

What then is the significance of data, if they are not
the kind of things that models represent? The answer to
this question is that data perform an evidential function.
That is, data play the role of evidence for the presence
of certain phenomena. The fact that we find a certain
pattern in a bubble chamber photograph is evidence for
the existence of neutral currents. Thus construed, we do
not denigrate the importance of data in science, but we
do not have to require that data have to be embeddable
into the model at stake.

Those who want to establish data models as targets
can reply to this in three ways. The first reply is an
appeal to radical empiricism. By postulating phenom-
ena over and above data we leave the firm ground of
observable things and started engaging in transempir-
ical speculation. But science has to restrict its claims
to observables and remain silent (or at least agnos-
tic) about the rest. Therefore, so the objection goes,
phenomena are chimeras that cannot be part of any se-
rious account of science. It is, however, doubtful that
this helps the data model theorist. Firstly, note that it
even rules out representing observable phenomena. To
borrow van Fraassen’s example on this story, a popula-
tion model of deer reproduction would represent data,
rather than deer [3.36, pp. 254–260]. Traditionally, em-
piricists would readily accept that deer, and the rates
at which they reproduce, are observable phenomena.
Denying that they are represented, by replacing them
with data models, seems to be an implausible move.
Secondly, irrespective of whether one understands phe-
nomena realistically [3.157] or antirealistically [3.160],
it is phenomena that models portray and not data. To
deny the reality of phenomena just won’t make a theo-
retical model represent data. Whether we regard neutral
currents as real or not, it is neutral currents that are por-
trayed in a field-theoretical model, not bubble chamber
photographs. Of course, one can suspend belief about
the reality of these currents, but that is a different mat-
ter.

The second reply is to invoke a chain of representa-
tional relationships. Brading and Landry [3.137] point
out that the connection between a model and the world
can be broken down in two parts: the connection be-
tween a model and a data model, and the connection
between a data model and the world [3.137, p. 575].
So the structuralist could claim that scientific models
represent data models in virtue of an isomorphism be-
tween the two and additionally claim that data models
in turn represent phenomena. But the key questions that

need to be addressed here are: (a) What establishes the
representational relationship between data models and
phenomena? and (b) Why if a scientific model rep-
resented some data model, which in turn represented
some phenomenon, would that establish a represen-
tational relationship between the model and the phe-
nomenon itself? With respect to the first question,Brad-
ing and Landry argue that it cannot be captured within
the structuralist framework [3.137, p. 575]. The ques-
tion has just been pushed back: rather than asking how
a scientific model qua mathematical structure repre-
sents a phenomenon, we now ask how a data model qua
mathematical structure represents a phenomenon. With
respect to the second question, although representation
is not intransitive, it is not transitive [3.20, pp. 11–12].
So more needs to be said regarding how a scientific
model representing a data model, which in turn repre-
sents the phenomenon from which data are gathered,
establishes a representational relationship between the
first and last element in the representational chain.

The third reply is due to van Fraassen [3.36]. His
Wittgensteinian solution is to diffuse the loss of reality
objection. Once we pay sufficient attention to the prag-
matic features of the contexts in which scientific and
data models are used, van Fraassen claims, there ac-
tually is no difference between representing data and
representing a target (or a phenomenon in Bogen and
Woodward’s sense) [3.36, p. 259]:

“in a context in which a given [data] model is
someone’s representation of a phenomenon, there is
for that person no difference between the question
whether a theory [theoretical model] fits that repre-
sentation and the question whether that theory fits
the phenomenon.”

Van Frasseen’s argument for this claim is long and
difficult and we cannot fully investigate it here; we re-
strict attention to one crucial ingredient and refer the
reader to Nguyen [3.161] for a detailed discussion of
the argument.

Moore’s paradox is that we cannot assert sentences
of the form p and I don’t believe that p, where p is an ar-
bitrary proposition. For instance, someone cannot assert
that Napoleon was defeated in the battle of Waterloo
and assert, at the same time, that she doesn’t believe that
Napoleon was defeated in the battle of Waterloo. Van
Fraassen’s treatment of Moore’s paradox is that speak-
ers cannot assert such sentences because the pragmatic
commitments incurred by asserting the first conjunct in-
clude that the speaker believe that p. This commitment
is then contradicted by the assertion of the second con-
junct. So instances of Moore’s paradox are pragmatic
contradictions. Van Fraassen then draws an analogy be-
tween this paradox and the scientific representation. He
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submits that a user simply cannot, on pain of pragmatic
contradiction, assert that a data model of a target sys-
tem be embeddable within a theoretical model without
thereby accepting that the theoretical model represents
the target.

However, Nguyen [3.161] argues that in the case
of using a data model as a representation of a phe-
nomenon, no such pragmatic commitment is incurred,
and therefore no such contradiction follows when ac-
companied by doubt that the theoretical model also
represents the phenomenon. To see why this is the case,
consider a more mundane example of representation:
a caricaturist can represent Margaret Thatcher as draco-
nian without thereby committing himself to the belief
that Margaret Thatcher really is draconian. Pragmati-
cally speaking, acts of representation are weaker than
acts of assertion: they do not incur the doxastic com-
mitments required for van Fraassen’s analogy to go
through. So it seems van Fraassen doesn’t succeed in
dispelling the loss of reality objection. How target sys-
tems enter the picture in the structuralist account of
scientific representation remains therefore a question
that structuralists who invoke data models as provid-
ing the target-end structures must address. Without such
an account the structuralist account of representation
remains at the level of data, a position that seems im-
plausible, and contrary to actual scientific practice.

We now turn to the second response: that a structure
is instantiated in the system. As mentioned above, this
response comes in three versions. The first is metaphys-
ically more parsimonious and builds on the systems’
constituents. Although target systems are not structures,
they are composed of parts that instantiate physical
properties and relations. The parts can be used to de-
fine the domain of individuals, and by considering the
physical properties and relations purely extensionally,
we arrive at a class of extensional relations defined
over that domain (see for instance Suppes’ discussion
of the solar system [3.100, p. 22]). This supplies the
required notion of structure. We might then say that
physical systems instantiate a certain structure, and it
is this structure that models are isomorphic to.

As an example consider the methane molecule.
The molecule consists of a carbon atom and four
hydrogen atoms grouped around it, forming a tetra-
hedron. Between each hydrogen atom and the carbon
atom there is a covalent bond. One can then regard
the atoms as objects and the bonds are relations.
Denoting the carbon atom by a, and the four hydrogen
atoms by b, c, d, and e, we obtain a structure S with
the domain U D fa; b; c; d; eg and the relation rD
fha; bi; hb; ai; ha; ci; hc; ai; ha; di; hd; ai; ha; ei; he; aig,
which can be interpreted as being connected by
a covalent bond.

The main problem facing this approach is the
underdetermination of target-end structure. Under-
determination threatens in two distinct ways. Firstly,
in order to identify the structure determined by
a target system, a domain of objects is required.
What counts as an object in a given target system is
a substantial question [3.21]. One could just as well
choose bonds as objects and consider the relation
sharing a node with another bond. Denoting the
bonds by a0; b0; c0 and d0, we obtain a structure S0

with the domain U0 D fa0; b0; c0; d0g and the relation
r D fha0; b0i; hb0; a0i; ha0; c0i; hc0; a0i; ha0; d0i; hd0; a0i;
hb0; c0i; hc0; b0i; hb0; d0i; hd0; b0i; hc0; d0i; hd0; c0ig. Ob-
viously S and S0 are not isomorphic. So which structure
is picked out depends on how the system is described.
Depending on which parts one regards as individuals
and what relation one chooses, very different structures
can emerge. And it takes little ingenuity to come up
with further descriptions of the methane molecule,
which lead to yet other structures.

There is nothing special about the methane
molecule, and any target system can be presented under
alternative descriptions, which ground different struc-
tures. So the lesson learned generalizes: there is no such
thing as the structure of a target system. Systems only
have a structure under a particular description, and there
are many nonequivalent descriptions. This renders talk
about a model being isomorphic to target system sim-
pliciter meaningless. Structural claims do not stand on
their own in that their truth rests on the truth of a more
concrete description of the target system. As a conse-
quence, descriptions are an integral part of an analysis
of scientific representation.

In passing we note that Frigg [3.21, pp. 55–56]
also provides another argument that pulls in the same
direction: structural claims are abstract and are true
only relative to a more concrete nonstructural descrip-
tion. For a critical discussion of this argument see
Frisch [3.162, pp. 289–294] and Portides, Chap. 2.

Howmuch of a problem this is depends on how aus-
tere one’s conception ofmodels is. The semantic view of
theories was in many ways the result of an antilinguis-
tic turn in the philosophy of science. Many proponents
of the view aimed to exorcise language from an anal-
ysis of theories, and they emphasized that the model-
world relationship ought to be understood as a purely
structural relation. Van Fraassen, for instance, submits
that “no concept which is essentially language depen-
dent has any philosophical importance at all” [3.101,
p. 56] and observes that “[t]he semantic view of theo-
ries makes language largely irrelevant” [3.155, p. 222].
And other proponents of the view, while less vocal about
the irrelevance of language, have not assigned language
a systematic place in their analysis of theories.
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For someone of that provenance the above argument
is bad news. However, a more attenuated position could
integrate descriptions in the package of modeling, but
this would involve abandoning the idea that representa-
tion can be cashed out solely in structural terms. Bueno
and French have recently endorsed such a position.
They accept the point that different descriptions lead
to different structures and explain that such descrip-
tions would involve “at the very least some minimal
mathematics and certain physical assumptions” [3.53,
p. 887]. Likewise, Munich structuralists explicitly ac-
knowledge the need for a concrete description of the
target system [3.163, pp. 37–38], and they consider
these informal descriptions to be internal to the theory.
This is a plausible move, but those endorsing this so-
lution have to concede that there is more to epistemic
representation than structures and morphisms.

The second way in which structural indeterminacy
can surface is via Newman’s theorem. The theorem
essentially says that any system instantiates any struc-
ture, the only constraint being cardinality (a practically
identical conclusion is reached in Putnam’s so called
model-theoretic argument; see Demopoulos [3.164] for
a discussion). Hence, any structure of cardinality C
is isomorphic to a target of cardinality C because
the target instantiates any structure of cardinality C
(see Ketland [3.165] and Frigg and Votsis [3.166] for
discussions). This problem is not unsolvable, but all
solutions require that among all structures formally
instantiated by a target system one is singled out as
being the true or natural structure of the system. How
to do this in the structuralist tradition remains unclear
(Ainsworth [3.167] provides as useful summary of the
different solutions).

Newman’s theorem is both stronger and weaker
than the argument from multiple descriptions. It’s
stronger in that it provides more alternative structures
than multiple descriptions. It’s weaker in that many of
the structures it provides are unphysical because they
are purely set theoretical combinations of elements. By
contrast, descriptions pick out structures that a system
can reasonably be seen as possessing.

The second version of the second response emerges
from the literature on the applicability of mathe-
matics. Structural platonists like Resnik [3.108] and
Shapiro [3.41, 109, 168] take structures to be ante rem
universals. In this view, structures exist independently
of physical systems, yet they can be instantiated in
physical systems. In this view systems instantiate struc-
tures and models are isomorphic to these instantiated
structures.

This view raises all kind of metaphysical issues
about the ontology of structures and the instantiation re-
lation. Let us set aside these issues and assume that they

can be resolved in one way or another. This would still
leave us with serious epistemic and semantic questions.
How do we know a certain structure is instantiated in
a system and how do we refer to it? Objects do not come
with labels on their sleeves specifying which structures
they instantiate, and proponents of structural universals
face a serious problem in providing an account of how
we access the structures instantiated by target systems.
Even if – as a brute metaphysical fact – target systems
only instantiate a small number of structures, and there-
fore there is a substantial question regarding whether
or not scientific models represent them, this does not
help us understand how we could ever come to know
whether or not the isomorphism holds. It seems that
individuating a domain of objects and identifying re-
lations between them is the only way for us to access
a structure. But then we are back to the first version of
the response, and we are again faced with all the prob-
lems that it raises.

The third version of the second response is more
radical. One might take target systems themselves to be
structures. If this is the case then there is no problem
with the idea that they can be isomorphic to a scien-
tific model. One might expect ontic structural realists to
take this position. If the world fundamentally is a struc-
ture, then there is nothing mysterious about the notion
of an isomorphism between a model and the world. Sur-
prisingly, some ontic structuralists have been hesitant
to adopt such a view (see French and Ladyman [3.120,
p. 113] and French [3.169, p. 195]). Others, however,
seem to endorse it. Tegmark [3.170], for instance, offers
an explicit defense of the idea that the world simply is
a mathematical structure. He defines a seemingly mod-
erate form of realism – what he calls the external reality
hypothesis (ERH) – as the claim that “there exists an
external physical reality completely independent of us
humans” [3.170, p. 102] and argues that this entails that
the world is a mathematical structure (his “mathemati-
cal universe hypothesis”) [3.170, p. 102]. His argument
for this is based on the idea that a so-called theory of
everything must be expressible in a form that is devoid
of human-centric baggage (by the ERH), and the only
theories that are devoid of such baggage are mathemat-
ical, which, strictly speaking, describe mathematical
structures. Thus, since a complete theory of everything
describes an external reality independent of humans,
and since it describes a mathematical structure, the ex-
ternal reality itself is a mathematical structure.

This approach stands or falls on the strengths of its
premise that a complete theory of everything will be
formulated purely mathematically, without any human
baggage, which in turn relies on a strict reductionist
account of scientific knowledge [3.170, pp. 103–104].
Discussing this in any detail goes beyond our current
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purposes. But it is worth noting that Tegmark’s dis-
cussion is focused on the claim that fundamentally the
world is a mathematical structure. Even if this were the
case, it seems irrelevant for many of our current sci-
entific models, whose targets aren’t at this level. When
modeling an airplane wing we don’t refer to the funda-

mental super-string structure of the bits of matter that
make up the wing, and we don’t construct wing mod-
els that are isomorphic to such fundamental structures.
So Tegmark’s account offers no answer to the question
about where structures are to be found at the level of
nonfundamental target systems.

3.5 The Inferential Conception

In this section we discuss accounts of scientific rep-
resentation that analyze representation in terms of the
inferential role of scientific models. On the previ-
ous accounts discussed, a model’s inferential capacity
dropped out of whatever it was that was supposed to
answer the ER-problem: proposed morphisms or sim-
ilarity relations between models and their targets for
example. The accounts discussed in this section build
the notion of surrogative reasoning directly into the
conditions on epistemic representation.

3.5.1 Deflationary Inferentialism

Suárez argues that we should adopt a “deflationary or
minimalist attitude and strategy” [3.32, p. 770] when
addressing the problem of epistemic representation. We
will discuss deflationism in some detail below, but in
order to formulate and discuss Suárez’s theory of rep-
resentation we need at least a preliminary idea of what
is meant by a deflationary attitude. In fact two different
notions of deflationism are in operation in his account.
The first is [3.32, p. 771]:

“abandoning the aim of a substantive theory to seek
universal necessary and sufficient conditions that
are met in each and every concrete real instance of
scientific representation [. . . ] necessary conditions
will certainly be good enough.”

We call the view that a theory of representa-
tion should provide only necessary conditions n-
deflationism (n for necessary). The second notion is
that we should seek “no deeper features to representa-
tion other than its surface features” [3.32, p. 771] or
“platitudes” [3.171, p. 40], and that we should deny
that an analysis of a concept “is the kind of analysis
that will shed explanatory light on our use of the con-
cept” [3.172, p. 39]. We call this position s-deflationism
(s for surface feature). As far as we can tell, Suárez in-
tends his account of representation to be deflationary in
both senses.

Suárez dubs the account that satisfies these criteria
inferentialism [3.32, p. 773]:

Definition 3.9 Inferentialism 1
A scientific modelM represents a target T only if (i) the
representational force ofM points towards T , and (ii)M
allows competent and informed agents to draw specific
inferences regarding T .

Notice that this condition is not an instantiation of the
ER-scheme: in keeping with n-deflationism it features
a material conditional rather than a biconditional and
hence provides necessary (but not sufficient) conditions
for M to represent T . We now discuss each condition
in turn, trying to explicate in what way they satisfy s-
deflationism.

The first condition is designed to make sure that M
and T indeed enter into a representational relationship,
and Suárez stresses that representational force is “nec-
essary for any kind of representation” [3.32, p. 776].
But explaining representation in terms of representa-
tional force seems to shed little light on the matter
as long as no analysis of representational force is of-
fered. Suárez addresses this point by submitting that
the first condition can be “satisfied by mere stipula-
tion of a target for any source” [3.32, p. 771]. This
might look like denotation as in Sect. 3.2. But Suárez
stresses that this is not what he intends for two rea-
sons. Firstly, he takes denotation to be a substantive
relation between a model and its target, and the intro-
duction of such a relation would violate the requirement
of s-deflationism [3.172, p. 41]. Secondly, M can de-
note T only if T exists. Thus including denotation
as a necessary condition on scientific representation
“would rule out fictional representation, that is, repre-
sentation of nonexisting entities” [3.32, p. 772], and
“any adequate account of scientific representation must
accommodate representations with fictional or imagi-
nary targets” [3.172, p. 44].

The second issue is one that besets other accounts of
representation too, in particular similarity and isomor-
phism accounts. The first reason, however, goes right
to the heart of Suárez’s account: it makes good on the
s-deflationary condition that nothing other than surface
features can be included in an account of representation.
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At a surface level one cannot explicate representational
force at all and any attempt to specify what representa-
tional force consists in is a violation of s-deflationism.

The second necessary condition, that models allow
competent and informed agents to draw specific infer-
ences about their targets, is in fact just the surrogative
reasoning condition we introduced in Sect. 3.1, now
taken as a necessary condition on epistemic represen-
tation. The sorts of inferences that models allow are
not constrained. Suárez points out that the condition
“does not require that [M] allow deductive reasoning
and inference; any type of reasoning inductive, analog-
ical, abductive – is in principle allowed” [3.32, p. 773].
(The insistence on inference makes Suárez’s account an
instance of what Chakravartty [3.173] calls a functional
conception of representation.)

A problem for this approach is that we are left with
no account of how these inferential rules are generated:
what is it about models that allows them to license infer-
ences about their targets, or what leads them to license
some inferences and not others? Contessa makes this
point most stridently when he argues that [3.29, p. 61]:

“On the inferential conception, the user’s ability
to perform inferences from a vehicle [model] to
a target seems to be a brute fact, which has no
deeper explanation. This makes the connection be-
tween epistemic representation and valid surroga-
tive reasoning needlessly obscure and the perfor-
mance of valid surrogative inferences an activity
as mysterious and unfathomable as soothsaying or
divination.”

This seems correct, but Suárez can dismiss this
complaint by appeal to s-deflationism. Since inferen-
tial capacity is supposed to be a surface-level feature of
scientific representation, we are not supposed to ask for
any elucidation about what makes an agent competent
and well informed and how inferences are drawn.

For these reasons Suárez’s account is deflation-
ary both in the sense of n-deflationism and of s-
deflationism. His position provides us with a concept
of epistemic representation that is cashed out in terms
of an inexplicable notion of representational force and
of an inexplicable capacity to ground inferences. This
is very little indeed. It is the adoption of a deflationary
attitude that allows him to block any attempt to further
unpack these conditions and so the crucial question is:
why should one adopt deflationism?

We turn to this question shortly. Before doing so we
want to briefly outline how the above account fares with
respect to the other problems introduced in Sect. 3.1.
The account provides a neat explanation of the possi-
bility of misrepresentation [3.32, p. 776]:

“part (ii) of this conception accounts for inaccuracy
since it demands that we correctly draw inferences
from the source about the target, but it does not de-
mand that the conclusions of these inferences be all
true, nor that all truths about the target may be in-
ferred.”

Models represent their targets only if they license
inferences about them. They represent them accurately
to the extent that the conclusions of these inferences are
true.

With respect to the representational demarcation
problem, Suárez illustrates his account with a large
range of representations, including diagrams, equa-
tions, scientific models, and nonscientific representa-
tions such as artistic portraits. He explicitly states that
“if the inferential conception is right, scientific rep-
resentation is in several respects very close to iconic
modes of representation like painting” [3.32, p. 777]
and he mentions the example of Velázquez’s portrait of
Innocent X [3.32]. It is clear that the conditions of infer-
entialism 1 (Definition 3.9) are met by nonscientific as
well as scientific epistemic representations. So, at least
without sufficient conditions, there is no clear way of
demarcating between the different kinds of epistemic
representation.

Given the wide variety of types of representation
that this account applies to, it’s unsurprising that Suárez
has little to say about the ontological problem. The only
constraint that inferentialism 1 (Definition 3.9) places
on the ontology of models is that “[i]t requires [M] to
have the internal structure that allows informed agents
to correctly draw inferences about [T]” [3.32, p. 774].
And relatedly, since the account is supposed to apply
to a wide variety of entities, including equations and
mathematical structures, the account implies that math-
ematics is successfully applied in the sciences, but in
keeping with the spirit of deflationism no explanation is
offered about how this is possible.

Suárez does not directly address the problem of
style, but a minimalist answer emerges from what he
says about representation. On the one hand he explicitly
acknowledges that many different kinds of inferences
are allowed by the second condition in inferentialism 1
(Definition 3.9). In the passage quoted above he men-
tions inductive, analogical and abductive inferences.
This could be interpreted as the beginning of classi-
fication of representational styles. On the other hand,
Suárez remains silent about what these kinds are and
about how they can be analyzed. This is unsurpris-
ing because spelling out what these inferences are, and
what features of the model ground them, would amount
to giving a substantial account, which is something
Suárez wants to avoid.
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Let us now return to the question about the mo-
tivation for deflationism. As we have seen, a com-
mitment to deflationism about the concept is central
to Suárez’s approach to scientific representation. But
deflationism comes in different guises, which Suárez il-
lustrates by analogy with deflationism with respect to
truth. Suárez [3.172] distinguishes between the redun-
dancy theory (associated with Frank Ramsey and also
referred to as the no theory view), abstract minimalism
(associated with Crispin Wright) and the use theory (as-
sociated with Paul Horwich). What all three are claimed
to have in common is that they accept the disquotational
schema – i. e., instances of the form: P is true iff P.
Moreover they [3.172, p. 37]

“either do not provide an analysis in terms of neces-
sary and sufficient conditions, or if they do provide
such conditions, they claim them to have no ex-
planatory purchase.”

He claims that the redundancy theory of truth is
characterized by the idea that [3.172, p. 39]:

“the terms truth and falsity do not admit a theo-
retical elucidation or analysis. But that, since they
can be eliminated in principle – if not in practice –
by disquotation, they do not in fact require such an
analysis.”

So, as Suárez characterizes the position, the redun-
dancy theory denies that any necessary and sufficient
conditions for application of the truth predicate case be
given. He argues that [3.172]:

“the generalization of this no-theory theory for any
given putative concept X is the thought that X nei-
ther possesses nor requires necessary and sufficient
conditions because it is not in fact a genuine, ex-
planatory or substantive concept.”

This motivates n-deflationism (although one might
ask why such a position would allow even necessary
conditions. Suárez doesn’t discuss this).

This approach faces a number of challenges. First,
the argument is based on the premise that if deflation-
ism is good for truth it must be good for representation.
This premise is assumed tacitly. There is, however,
a question whether the analogy between truth and repre-
sentation is sufficiently robust to justify subjecting them
to the same theoretical treatment. Surprisingly, Suárez
offers little by way of explicit argument in favor of any
sort of deflationary account of epistemic representation.
In fact, the natural analogue of the linguistic notion of
truth is accurate epistemic representation, rather than
epistemic representation itself, which may be more ap-
propriately compared with linguistic meaning. Second,
the argument insinuates that deflationism is the cor-

rect analysis of truth. This, however, is far from an
established fact. Different positions are available in the
debate and whether deflationism (or any specific ver-
sion of it) is superior to other proposals remains a matter
of controversy (see, for instance, Künne [3.174]). But
as long as it’s not clear that deflationism about truth
is a superior position, it’s hard to see how one can
muster support for deflationism about representation by
appealing to deflationism about truth.

Moreover, a position that allows only necessary
conditions on epistemic representation faces a serious
problem. While such an account allows us to rule out
certain scenarios as instances of epistemic represen-
tation (for example a proper name doesn’t allow for
a competent and well informed language user to draw
any specific inferences about its bearer and Callender
and Cohen’s salt shaker doesn’t allow a user to draw any
specific inferences about Madagascar), the lack of suffi-
cient conditions doesn’t allow us to rule in any scenario
as an instance of epistemic representation. So on the
basis of inferentialism 1 (Definition 3.9) we are never
in position to assert that a particular model actually is
a representation, which is an unsatisfactory situation.

The other two deflationary positions in the debate
over truth are abstract minimalism and the use theory.
Suárez characterizes the use theory as being based on
the idea that “truth is nominally a property, although
not a substantive or explanatory one, which is essen-
tially defined by the platitudes of its use of the predicate
in practice” [3.172, p. 40]. Abstract minimalism is pre-
sented as the view that while truth is [3.172, p. 40]:

“legitimately a property, which is abstractly charac-
terized by the platitudes, it is a property that cannot
explain anything, in particular it fails to explain the
norms that govern its very use in practice.”

Both positions imply that necessary and sufficient
conditions for truth can be given [3.172]. But on either
account, such conditions only capture nonexplanatory
surface features. This motivates s-deflationism.

Since s-deflationism explicitly allows for neces-
sary and sufficient conditions, inferentialism 1 (Def-
inition 3.9) can be extended to an instance of the
ER-scheme, providing necessary and sufficient condi-
tions (which also seems to be in line with Suárez and
Solé [3.171, p. 41] who provide a formulation of infer-
entialism with a biconditional):

Definition 3.10 Inferentialism 2
A scientific model M represents a target T iff (i) the
representational force ofM points towards T , and (ii)M
allows competent and informed agents to draw specific
inferences regarding T .
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If one takes conditions (i) and (ii) to refer to “features
of activates within a normative practice, [that] do not
stand for relations between sources and targets” [3.172,
p. 46], then we arrive at a use-based account of epis-
temic representation. In order to understand a particular
instance of a model M representing a target T we have
to understand how scientists go about establishing that
M’s representational force points towards T , and the in-
ferential rules, and particular inferences from M to T ,
they use and make.

Plausibly, such a focus on practice amounts to look-
ing at the inferential rules employed in each instance,
or type of instance, of epistemic representation. This,
however, raises a question about the status of any such
analysis vis-à-vis the general theory of representation as
given in inferentialism 2 (Definition 3.10). There seem
to be two options. The first is to affirm inferentialism 2’s
(Definition 3.10) status as an exhaustive theory of repre-
sentation. This, however, would imply that any analysis
of the workings of a particular model would fall out-
side the scope of a theory of representation because
any attempt to address Contessa’s objection would push
the investigation outside the territory delineated by s-
deflationism. Such an approach seems to be overly
purist. The second option is to understand inferential-
ism 2 (Definition 3.10) as providing abstract conditions
that require concretization in each instance of epistemic
representation (abstraction can here be understood, for
instance, in Cartwright’s [3.74] sense). Studying the
concrete realizations of the abstract conditions is then
an integral part of the theory. This approach seems
plausible, but it renders deflationism obsolete. Thus
understood, the view becomes indistinguishable from
a theory that accepts the surrogative reasoning condi-
tion and the requirement of directionality as conditions
of adequacy and analyzes them in pluralist spirit, that is,
under the assumption that these conditions can have dif-
ferent concrete realizers in different contexts. But this
program can be carried out without ever mentioning de-
flationism.

One might reply that the first option unfairly stacks
the deck against inferentialism and point out that dif-
ferent inferential practices can be studied within the
inferentialist framework. One way of making good on
this idea would be to submit that the inferences from
models to their targets should be taken as conceptually
basic, denying that they need to be explained; in par-
ticular, denying that they need to be grounded by any
(possibly varying) relation(s) that might hold between
models and their targets. Such an approach is inspired
by Brandom’s inferentialism in the philosophy of lan-
guage where the central idea is to reverse the order of
explanation from representational notions – like truth
and reference – to inferential notions – such as the va-

lidity of argument [3.175, 176]. Instead, we are urged to
begin from the inferential role of sentences (or propo-
sitions, or concepts, and so on) – that is the role that
they play in providing reasons for other sentences (or
propositions etc.), and having such reasons provided for
them – and from this reconstruct their representational
aspects.

Such an approach is developed by de Donato Ro-
dríguez and Zamora Bonilla [3.177] and seems like
a fruitful route for future research, but for want of space
we will not discuss it in detail here. There is no evidence
that Suárez would endorse such an approach. And,
more worrying for inferentialism 2 (Definition 3.10),
it is not clear whether such an approach would satisfy
s-deflationism. Each investigation into the inferential
rules utilized in each instance, or type of instance of
epistemic representation will likely be a substantial
(possibly sociological or anthropological) project. Thus
the s-deflationary credentials of the approach – at least
if they are taken to require that nothing substantial can
be said about scientific representation in each instance,
as well as in general – are called into question.

Finally, if the conditions in inferentialism 2 (Defi-
nition 3.10) are taken to be abstract platitudes then we
arrive at an abstract minimalism. Although inferential-
ism 2 (Definition 3.10) defines the concept of epistemic
representation, the definition does not suffice to explain
the use of any particular instance of epistemic represen-
tation for ([3.172, p. 48], cf. [3.171]):

“on the abstract minimalism here considered, to
apply this notion to any given concrete case of rep-
resentation requires that some additional relation
obtains between [M] and [T], or a property of [M]
or [T], or some other application condition.”

Hence, according to this approach representational
force and inferential capacity are taken to be abstract
platitudes that suffice to define the concept of scien-
tific representation. However, because of their level of
generality, they fail to explain any particular instance
of it. To do this requires reference to additional fea-
tures that vary from case to case. These other conditions
can be “isomorphism or similarity” and they “would
need to obtain in each concrete case of representa-
tion” ([3.171, p. 45], [3.32, p. 773], [3.172, p. 43]).
These extra conditions are called the means of repre-
sentation, the relations that scientists exploit in order
to draw inferences about targets from their models,
and are to be distinguished from conditions (i) and
(ii), the constituents of representation, that define the
concept ([3.23, p. 230], [3.171, p. 43], [3.172, p. 46],
[3.178, pp. 93–94]). We are told that the means cannot
be reduced to the constituents but that [3.171, p. 43]:
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“all representational means (such as isomorphism
and similarity) are concrete instantiations, or real-
izations, of one of the basic platitudes that constitute
representation”

and that “there can be no application of represen-
tation without the simultaneous instantiation of a par-
ticular set of properties of [M] and [T], and their
relation” [3.171, p. 44].

Such an approach amounts to using conditions (i)
and (ii) to answer the ER-problem, but again with the
caveat that they are abstract conditions that require con-
cretization in each instance of epistemic representation.
In this sense it is immune to Contessa’s objection about
the mysterious capacity that models have to license
about their targets. They do so in virtue of more concrete
relations that hold between models and their targets, al-
beit relations that vary from case to case. The key ques-
tion facing this account is to fill in the details about what
sort of relations concretize the abstract conditions. But
we are now facing a similar problem as the above. Even
if s-deflationism applies to epistemic representation in
general, an investigation into each specific instance of
will involve uncovering substantial relations that hold
between models and their targets, which again conflicts
with Suárez’s adherence to a deflationist approach.

3.5.2 Inflating Inferentialism:
Interpretation

In response to difficulties like the above Contessa
claims that “it is not clear why we should adopt a de-
flationary attitude from the start” [3.29, p. 50] and
provides a “interpretational account” of scientific repre-
sentation that is still, at least to some extent, inspired by
Suárez’s account, but without being deflationary. Con-
tessa claims [3.29, p. 48]:

“[t]he main difference between the interpretational
conception [. . . ] and Suárez’s inferential conception
is that the interpretational account is a substantial
account – interpretation is not just a ’symptom’ of
representation; it is what makes something an epis-
temic representation of a something else.”

To explain in virtue of what the inferences can
be drawn, Contessa introduces the notion of an inter-
pretation of a model, in terms of its target system as
a necessary and sufficient condition on epistemic repre-
sentation ([3.29, p. 57], [3.179, pp. 126–127]):

Definition 3.11 Interpretation
A scientific model M is an epistemic representation of
a certain target T (for a certain user) if and only if the
user adopts an interpretation ofM in terms of T .

Contessa offers a detailed formal characterization of an
interpretation, which we cannot repeat here for want of
space (see [3.29, pp. 57–62] for details). The leading
idea is that the model user first identifies a set of rel-
evant objects in the model, and a set of properties and
relations these objects instantiate, along with a set of
relevant objects in the target and a set of properties and
relations these objects instantiate. The user then:

1. TakesM to denote T .
2. Takes every identified object in the model to denote

exactly one object in the target (and every relevant
object in the target has to be so denoted and as a re-
sult there is a one-to-one correspondence between
relevant objects in the model and relevant objects in
the target).

3. Takes every property and relation in the model to
denote a property or relation of the same arity in the
target (and, again, and every property and relation in
the target has to be so denoted and as a result there
will be one-to-one correspondence between relevant
properties and relations in the model and target).

A formal rendering of these conditions is what Con-
tessa calls an analytic interpretation (he also includes
an additional condition pertaining to functions in the
model and target, which we suppress for brevity). The
relationship between interpretations and the surrogative
reasoning mentioned above is that it is in virtue of the
user adopting an analytic interpretation that a model li-
censes inferences about its target.

At first sight Contessa’s interpretation may appear
to be equivalent to setting up an isomorphism between
model and target. This impression is correct in as far
as an interpretation requires that there be a one-to-one
correspondence between relevant elements and rela-
tions in the model and the target. However, unlike the
isomorphism view, Contessa’s interpretations are not
committed to models being structures, and relations
can be interpreted as full-fledged relations rather than
purely extensionally specified sets of tuples.

Interpretation (Definition 3.11) is a nondeflationary
account of scientific representation: most (if not all)
instances of scientific representation involve a model
user adopting an analytic interpretation towards a target.
The capacity for surrogative reasoning is then seen as
a symptom of the more fundamental notion of a model
user adopting an interpretation of a model in terms of
its target. For this reason the adoption of an analyti-
cal interpretation is a substantial sufficient condition on
establishing the representational relationship. Contessa
focuses on the sufficiency of analytic interpretations
rather than their necessity and adds that he does [3.29,
p. 58]
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“not mean to imply that all interpretation of vehi-
cles [models] in terms of the target are necessarily
analytic. Epistemic representations whose standard
interpretations are not analytic are at least conceiv-
able.”

Even with this in mind, it is clear that he intends that
some interpretation is a necessary condition on epis-
temic representation.

Let’s now turn to how interpretation fares with
respect to our questions for an account of epistemic rep-
resentation as set out in Sect. 3.2. Modulo the caveat
about nonanalytical interpretations, interpretation (Def-
inition 3.11) provides necessary and sufficient condi-
tions on epistemic representation and hence answers the
ER-problem. Furthermore, it does so in a way that ex-
plains the directionality of representation: interpreting
a model in terms of a target does not entail interpreting
a target in terms of a model.

Contessa does not comment on the applicability of
mathematics but since his account shares with the struc-
turalist account an emphasis on relations and one-to-
one model-target correspondence, Contessa can appeal
to the same account of the applicability of mathematics
as structuralist.

With respect to the demarcation problem, Contessa
is explicit that “[p]ortraits, photographs, maps, graphs,
and a large number of other representational devices”
perform inferential functions [3.29, p. 54]. Since noth-
ing in the notion of an interpretation seems restricted
to scientific models, it is plausible to regard interpreta-
tion (Definition 3.11) as a universal theory of epistemic
representation (a conclusion that is also supported by
the fact that Contessa [3.29] uses the example of the
London Underground map to motivate his account; see
also [3.179]). As such, interpretation (Definition 3.11)
seems to deny the existence of a substantial distinction
between scientific and nonscientific epistemic repre-
sentations (at least in terms of their representational
properties). It remains unclear how interpretation (Defi-
nition 3.11) addresses the problem of style. As we have
seen earlier, in particular visual representations fall into
different categories. It is a question for future research
how these can be classified within the interpretational
framework.

With respect to the question of ontology, interpre-
tation (Definition 3.11) itself places few constraints on
what scientific models are, ontologically speaking. All
it requires is that they consist of objects, properties, re-
lations, and functions. For this reason our discussion in
Sect. 3.3.3 above rears its head again here. As before,
how to apply interpretation (Definition 3.11) to physical
models can be understood relatively easily. But how to
apply it to nonphysical models is less straightforward.

Contessa [3.180] distinguishes between mathematical
models and fictional models, where fictional models are
taken to be fictional objects. We briefly return to his on-
tological views in Sect. 3.6.

In order to deal with the possibly of misrepresen-
tation, Contessa notes that “a user does not need to
believe that every object in the model denotes some
object in the system in order to interpret the model in
terms of the system” [3.29, p. 59]. He illustrates this
claim with an example of contemporary scientists us-
ing the Aristotelian model of the cosmos to represent
the universe, pointing out that “in order to interpret the
model in terms of the universe, we do not need to as-
sume that the sphere of fixed stars itself [. . . ] denotes
anything in the universe” [3.29].

From this example it is clear that the relevant sets
of objects, properties and functions isolated in the con-
struction of the analytic interpretation do not need to
exhaust the objects, properties, relations, and functions
of either the model or the target. The model user can
identify a relevant proper subset in each instance. This
allows interpretation (Definition 3.11) to capture the
common practice of abstraction in scientific models:
a model need only represent some features of its target,
and moreover, the model may have the sort of surplus
features are not taken to represent anything in the tar-
get, i. e., that not all of a model’s features need to play
a direct representational role.

This suggestion bears some resemblance to par-
tial structures, and it suffers from the same problem
too. In particular distortive idealisations are a source of
problems for interpretation (Definition 3.11), as several
commentators have observed (see Shech [3.181] and
Bolinska [3.28]). Contessa is aware of this problem and
illustrates it with the example of a massless string. His
response to the problem is to appeal to a user’s correc-
tive abilities [3.29, p. 60]:

“since models often misrepresent some aspect of the
system or other, it is usually up to the user’s compe-
tence, judgment, and background knowledge to use
the model successfully in spite of the fact that the
model misrepresents certain aspects of the system.”

This is undoubtedly true, but it is unclear how such
a view relates, or even derives from, interpretation (Def-
inition 3.11). An appeal to the competence of users
seems to be an ad hoc move that has no systematic
grounding in the idea of an interpretation, and it is an
open question how the notion of an interpretation could
be amended to give distortive idealizations a systematic
place.

Ducheyne [3.182] provides a variant of interpreta-
tion (Definition 3.11) that onemight think could be used
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to accommodate these distortive idealizations. The de-
tails of the account, which we won’t state precisely here
for want of space, can be found in [3.182, pp. 83–86].
The central idea is that each relevant relation specified
in the interpretation holds precisely in the model, and
corresponds to the same relation that holds only ap-
proximately (with respect to a given purpose) in the
target. For example, the low mass of an actual pen-
dulum’s string approximates the masslessness of the
string in the model. The one-to-one correspondence
between (relevant) objects and relations in the model
and target is retained, but the notion of a user tak-
ing relations in the model to denote relations in the
target is replaced with the idea that the relations in
the target are approximations of the ones they corre-
spond to. Ducheyne calls this the pragmatic limiting
case account of scientific representation (the pragmatic
element comes from the fact that the level of approx-
imation required is determined by the purpose of the
model user).

However, if this account is to succeed in explaining
how distortive idealizations are scientific representa-
tions, then more needs to be said about how a target
relation can approximate a model relation. Ducheyne
implicitly relies on the fact that relations are such that
“we can determine the extent to which [they hold]
empirically” [3.182, p. 83] (emphasis added). This sug-
gests that he has quantifiable relations in mind, and
that what it means for a relation r in the target to
approximate a relation r’ in the model is a matter
of comparing numerical values, where a model user’s
purpose determines how close they must be if the for-
mer is to count as an approximation of the latter. But
whether this exhausts the ways in which relations can
be approximations remains unclear. Hendry [3.183],
Laymon [3.184], Liu [3.185], Norton [3.186], and Ram-
sey [3.187], among others, offer discussions of dif-
ferent kinds of idealizations and approximations, and
Ducheyne would have to make it plausible that all these
can be accommodated in his account.

More importantly, Ducheyne’s account has prob-
lems dealing with misrepresentations. Although it is
designed to capture models that misrepresent by being
approximations of their targets, it remains unclear how
it deals with models that are outright mistaken. For ex-
ample, it seems a stretch to say that Thomson’s model
of the atom (now derogatively referred to as the plum
pudding model) is an approximation of what the quan-
tum mechanical shell model tells us about atoms, and
it seems unlikely that there is a useful sense in which
the relations that hold between electrons in Thomson’s
model approximate those that hold in reality. But this
does not mean that it is not a scientific representation of
the atom; it’s just an incorrect one. It does not seem to

be the case that all cases of scientific misrepresentation
are instances where the model is an approximation of
the target (or even conversely, it is not clear whether all
instances of approximation need to be considered cases
of misrepresentation in the sense that they license false-
hoods about their targets).

3.5.3 The Denotation, Demonstration,
and Interpretation Account

Our final account is Hughes’ denotation, demonstra-
tion, and interpretation (DDI) account of scientific
representation [3.188] and [3.189, Chap. 5]. This ac-
count has inspired both the inferential (see Suárez [3.32,
p. 770] and [3.172]) and the interpretational account
(see Contessa [3.179, p. 126]) discussed in this section.

Quoting directly from Goodman [3.64, p. 5],
Hughes takes a model of a physical system to “be
a symbol for it, stand for it, refer to it” [3.188, p. 330].
Presumably the idea is that a model denotes its target
it the same way that a proper name denotes its bearer,
or, stretching the notion of denotation slightly, a pred-
icate denote elements in its extension. (Hughes [3.188,
p. 330] notes that there is an additional complication
when the model has multiple targets but this is not spe-
cific to the DDI account and is discussed in more detail
in Sect. 3.8). This is the first D in DDI. What makes
models epistemic representations and thereby distin-
guishes them from proper names, are the demonstration
and interpretation conditions.

The demonstration condition, the second D in DDI,
relies on a model being “a secondary subject that has,
so to speak, a life of its own. In other words, [a] rep-
resentation has an internal dynamic whose effects we
can examine” [3.188, p. 331] (that models have an in-
ternal dynamic is all that Hughes has to say about the
problem of ontology). The two examples offered by
Hughes are both models of what happens when light is
passed through two nearby slits. One model is math-
ematical where the internal dynamics are “supplied
by the deductive, resources of the mathematics they
employ” [3.188], the other is a physical ripple cham-
ber where they are supplied by “the natural processes
involved in the propagation of water waves” [3.188,
p. 332].

Such demonstrations, on either mathematical mod-
els or physical models are still primarily about the
models themselves. The final aspect of Hughes’ ac-
count – the I in DDI – is interpretation of what has
been demonstrated in the model in terms of the target
system. This yields the predictions of the model [3.188,
p. 333]. Unfortunately Hughes has little to say about
what it means to interpret a result of a demonstration
on a model in terms of its target system, and so one has
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to retreat to an intuitive (and unanalyzed) notion of car-
rying over results from models to targets.

Now Hughes is explicit that he is not attempting
to answer the ER-problem, and that he does not even
offer denotation, demonstration and interpretation as
individually necessary and jointly sufficient conditions
for scientific representation. He prefers the more [3.188,
p. 339]

“modest suggestion that, if we examine a theoretical
model with these three activities in mind, we shall
achieve some insight into the kind of representation
that it provides.”

We are not sure how to interpret Hughes’ position
in light of this. On one reading, he can be seen as de-
scribing how we usemodels. As such,DDI functions as
a diachronic account of what a model user does when
using a model in an attempt to learn about a target sys-
tem. We first stipulate that the model stands for the
target, then prove what we want to know, and finally
transfer the results obtained in the model back to the
target. Details aside, this picture seems by and large
correct. The problem with the DDI account is that it
does not explain why and how this is possible. Under
what conditions is it true that the model denotes the tar-
get? What kinds of things are models that they allow
for demonstrations? How does interpretation work; that
is, how can results obtained in the model be transferred
to the target? These are questions an account of epis-
temic representation has to address, but which are left
unanswered by the DDI account thus interpreted. Ac-
cordingly, DDI provides an answer to a question distinct
from the ER-problem. Although a valuable answer to
the question of how models are used, it does not help us
too much here, since it presupposes the very representa-
tional relationship we are interested in between models
and their targets.

An alternative reading of Hughes’ account emerges
when we consider the developments of the structural-
ist and similarity conceptions discussed previously, and
the discussion of deflationism in Sect. 3.5.1: perhaps the
very act of using a model, with all the user intentions
and practices that brings with it, constitutes the epis-
temic representation relationship itself. And as such,
perhaps the DDI conditions could be taken as an answer
to the ER-problem:

Definition 3.12 DDI-ER
A scientific model M represents a target T iff M de-
notes T , an agent (or collection of thereof) S exploits
the internal dynamic of M to make demonstrations D,
which in turn are interpreted by the agent (or collection
of thereof) to be about T .

This account comes very close to interpretation (Defi-
nition 3.11) as discussed in Sect. 3.5.2. And as such it
serves to answer the questions we set out in Sect. 3.1
above in the same way. But in this instance, the no-
tion of what it means to exploit an internal dynamic
and interpret the results of this to be about T need fur-
ther explication. If the notion of an interpretation is
cashed out in the same way as Contessa’s analytic in-
terpretation, then the account will be vulnerable to the
same issues as those discussed previously. In another
place Hughes endorses Giere’s semantic view of theo-
ries, which he characterizes as connecting models to the
target with a theoretical hypothesis [3.190, p. 121]. This
suggests that an interpretation is a theoretical hypothe-
sis in this sense. If so, then Hughes’s account collapses
into a version of Giere’s.

Given that Hughes describes his account as “de-
signedly skeletal [and in need] to be supplemented
on a case-by-case basis” [3.188, p. 335], one option
available is to take the demonstration and interpreta-
tion conditions to be abstract (in the sense of abstract
minimalism discussed above), which require filling in
each instance, or type of instance, of epistemic repre-
sentation. As Hughes notes, his examples of the internal
dynamics of mathematical and physical models are rad-
ically different with the demonstrations of the former
utilizing mathematics, and the latter physical proper-
ties such as the propagation of water waves. Similar
remarks apply to the interpretation of these demonstra-
tions, as well as to denotation. But as with Suárez’s
account, the definition sheds little light on the prob-
lem at hand as long as no concrete realizations of
the abstract conditions are discussed. Despite Hughes’
claims to the contrary, such an account could prove
a viable answer the ER-problem, and it seems to cap-
ture much of what is valuable about both the abstract
minimalist version of inferentialism 2 (Definition 3.10)
as well as interpretation (Definition 3.11) discussed
above.

3.6 The Fiction View of Models

In this section we discuss a number of recent attempts
to analyze scientific modeling by drawing an analogy
with literary fiction. We begin by introducing the lead-
ing ideas and differentiating between different strands

of argument. We then examine a number of accounts
that analyze epistemic representation against the back-
drop of literary fiction. We finally discuss criticisms of
the fiction view.
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3.6.1 Models and Fiction

Scientific discourse is rife with passages that appear
to be descriptions of systems in a particular discipline,
and the pages of textbooks and journals are filled with
discussions of the properties and the behavior of those
systems. Students of mechanics investigate at length the
dynamical properties of a system consisting of two or
three spinning spheres with homogeneous mass distri-
butions gravitationally interacting only with each other.
Population biologists study the evolution of one species
that reproduces at a constant rate in an unchanging en-
vironment. And when studying the exchange of goods,
economists consider a situation in which there are only
two goods, two perfectly rational agents, no restric-
tions on available information, no transaction costs, no
money, and dealings are done immediately. Their sur-
face structure notwithstanding, no one would mistake
descriptions of such systems as descriptions of an ac-
tual system: we know very well that there are no such
systems (of course some models are actual systems –
a scale model of a car in a wind tunnel for example –
but in this section we focus on models that are not of
this kind). Scientists sometimes express this fact by say-
ing that they talk aboutmodel land (for instance [3.191,
p.135]).

Thomson-Jones [3.98, p. 284] refers to such a de-
scription as a “description of a missing system”. These
descriptions are embedded in what he calls the “face
value practice” [3.98, p. 285]: the practice of talking
and thinking about these systems as if they were real.
We observe that the amplitude of an ideal pendulum
remains constant over time in much the same way in
which we say that the Moon’s mass is approximately
7:34�1022 kg. Yet the former statement is about a point
mass suspended from a massless string – and there is no
such thing in the world.

The face value practice raises a number of ques-
tions. What account should be given of these descrip-
tions and what sort of objects, if any, do they describe?
How should we analyze the face value practice? Are
we putting forward truth-evaluable claims when putting
forward descriptions of missing systems? An answer to
these questions emerges from the following passage by
Peter Godfrey-Smith [3.152, p. 735]:

“[. . . ] I take at face value the fact that modelers
often take themselves to be describing imaginary bi-
ological populations, imaginary neural networks, or
imaginary economies. [. . . ] Although these imag-
ined entities are puzzling, I suggest that at least
much of the time they might be treated as simi-
lar to something that we are all familiar with, the
imagined objects of literary fiction. Here I have in

mind entities like Sherlock Holmes’ London, and
Tolkein’s Middle Earth. [. . . ] the model systems of
science often work similarly to these familiar fic-
tions.”

This is the core of the fiction view of models:
models are akin to places and characters in literary
fiction. When modeling the solar system as consist-
ing of ten perfectly spherical spinning tops physicists
describe (and take themselves to describe) an imagi-
nary physical system; when considering an ecosystem
with only one species biologists describe an imaginary
population; and when investigating an economy with-
out money and transaction costs economists describe
an imaginary economy. These imaginary scenarios are
tellingly like the places and characters in works of fic-
tion like Madame Bovary and Sherlock Holmes.

Although hardly at the center of attention, the par-
allels between certain aspects of science and literary
fiction have not gone unnoticed. Maxwell discussed in
great detail the motion of “a purely imaginary fluid”
in order to understand the electromagnetic field [3.192,
pp. 159–160]. The parallel between science and fiction
occupied center stage in Vaihinger’s [3.193] philoso-
phy of the as if. More recently, the parallel has also
been drawn specifically between models and fiction.
Cartwright observes that “a model is a work of fic-
tion” [3.194, p. 153] and later suggests an analysis of
models as fables [3.73, Chap. 2]. McCloskey [3.195]
emphasises the importance of narratives and stories
in economics. Fine notes that modeling natural phe-
nomena in every area of science involves fictions in
Vaihinger’s sense [3.196, p. 16], and Sklar highlights
that describing systems as if they were systems of
some other kind is a royal route to success [3.197,
p. 71]. Elgin [3.198, Chap. 6] argues that science shares
important epistemic practices with artistic fiction.Hart-
mann [3.199] and Morgan [3.200] emphasize that sto-
ries and narratives play an important role in models,
and Morgan [3.201] stresses the importance of imag-
ination in model building. Sugden [3.202] points out
that economic models describe “counterfactual worlds”
constructed by the modeler. Frigg [3.30, 203] suggests
that models are imaginary objects, and Grüne-Yanoff
and Schweinzer [3.204] emphasize the importance of
stories in the application of game theory. Toon [3.48,
205] has formulated an account of representation based
on a theory of literary fiction.Contessa [3.180] provides
a fictional ontology of models and Levy [3.43, 206] dis-
cusses models as fictions.

But simply likening modeling to fiction does not
solve philosophical problems. Fictional discourse and
fictional entities face well-known philosophical ques-
tions, and hence explaining models in terms of fictional
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characters seems to amount to little more than to ex-
plain obscurum per obscurius. The challenge for pro-
ponents of the fiction view is to show that drawing
an analogy between models and fiction has heuristic
value.

A first step towards making the analogy productive
is to get clear on what the problem is that the appeal
to fiction is supposed to solve. This issue divides pro-
ponents of the fiction view into two groups. Authors
belonging to the first camp see the analogy with fic-
tion as providing an answer to the problem of ontology.
Models, in that view, are ontologically on par with liter-
ary fiction while there is no productive parallel between
models and fiction as far as the ER-problem (or in-
deed any other problem of representation) is concerned.
Authors belonging to the second group hold the oppo-
site view. They see the analogy with fiction first and
foremost as providing an answer to the ER-problem (al-
though, as we have seen, this may place restrictions on
the ontology of models). Scientific representation, in
this view, has to be understood along the lines of how
literary fiction relates to reality. Positions on ontology
vary. Some authors in this group also adopt a fiction
view of ontology; some remain agnostic about the anal-
ogy’s contribution to the matters of ontology; and some
reject the problem of ontology altogether.

This being a review of models and representa-
tion, we refer the reader to Gelfert’s contribution to
this book for an in-depth discussion of the ontology
of models, Chap. 1, and focus on the fiction view’s
contribution to semantics. Let us just note that those
who see fiction as providing an ontology of models
are spoiled for choice. In principle every option avail-
able in the extensive literature on fiction is a candidate
for an ontology of models; for reviews of these op-
tions see Friend [3.207] and Salis [3.208]. Different
authors have made different choices, with proposals
being offered by Contessa [3.180], Ducheyne [3.72],
Frigg [3.203], Godfrey-Smith [3.209], Levy [3.43], and
Sugden [3.210]. Cat [3.211], Liu [3.212, 213], Pin-
cock [3.214, Chap. 12], Thomson-Jones [3.98] and
Toon [3.205] offer critical discussions of some of these
approaches.

Even if these ontological problems were settled in
a satisfactory manner, we would not be home and dry
yet. Vorms [3.215, 216] argues that what’s more im-
portant than the entity itself is the format in which
the entity is presented. A fiction view that predomi-
nantly focuses on understanding the fictional entities
themselves (and, once this task is out of the way, their
relation to the real-world targets), misses an impor-
tant aspect, namely how agents draw inferences from
models. This, Vorms submits, crucially depends on the
format under which they are presented to scientists, and

different formats allow scientists to draw different in-
ferences. This ties in with Knuuttila’s insistence that we
ought to pay more attention to the “medium of represen-
tation” when studying models [3.9, 217].

One last point stands in need of clarification: the
meaning of the term fiction. Setting aside subtleties that
are irrelevant to the current discussion, the different
uses of fiction fall into two groups: fiction as falsity and
fiction as imagination [3.218]. Even though not mutu-
ally exclusive, the senses should be kept separate. The
first use of fiction characterizes something as deviating
from reality. We brand Peter’s account of events a fic-
tion if he does not report truthfully how things have
happened. In the second use, fiction refers to a kind of
literature, literary fiction. Rife prejudice notwithstand-
ing, the defining feature of literary fiction is not falsity.
Neither is everything that is said in, say, a novel untrue
(novels like War and Peace contain correct historical
information); nor does every text containing false re-
ports qualify as fiction (a wrong news report or a faulty
documentary do not by that token turn into fiction –
they remain what they are, namely wrong factual state-
ments). What makes a text fictional is the attitude that
the reader is expected to adopt towards it. When reading
a novel we are not meant to take the sentences we read
as reports of fact; rather we are supposed to imagine the
events described.

It is obvious from what has been said so far that
the fiction view of models invokes the second sense
of fiction. Authors in this tradition do not primarily
intend to brand models as false; they aim to empha-
size that models are presented as something to ponder.
This is not to say the first sense of fiction is irrele-
vant in science. Traditionally fictions in that sense have
been used as calculational devices for generating pre-
dictions, and recently Bokulich [3.14] emphasized the
explanatory function of fictions. The first sense of fic-
tion is also at work in philosophy where antirealist
positions are described as fictionalism. For instance,
someone is a fictionalist about numbers if she thinks
that numbers don’t exist (see Kalderon [3.219] for a dis-
cussion of several fictionalisms of this kind). Scientific
antirealists are fictionalists about many aspects of scien-
tific theories, and hence Fine characterizes fictionalism
as an “antirealist position in the debate over scientific
realism” [3.196, 220, 221], a position echoed in Wins-
berg [3.222] and Suárez [3.223]. Morrison [3.224] and
Purves [3.225] and offer critical discussions of this ap-
proach, which the latter calls fiction as “truth conducive
falsehood” [3.225, p. 236]; Woods [3.226] offers a crit-
ical assessment of fictionalism in general. Although
there are interesting discussions to be had about the role
that this kind of fictions play in the philosophy of sci-
ence, it is not our interest here.
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3.6.2 Direct Representation

In this subsection and the next we discuss proposals that
have used the analogy between models and fiction to
elucidate representation.

Most theories of representation we have encoun-
tered so far posit that there are model systems and con-
strue epistemic representation as a relation between two
entities, the model system and the target system. Toon
calls this the indirect view of representation [3.205,
p. 43]; Levy, speaking specifically about the fiction
view of models, refers to it as the whole-cloth fiction
view [3.206, p. 741]. Indeed, Weisberg views this in-
directness as the defining feature of modeling [3.227].
This view faces the problem of ontology because it has
to say what kind of things model systems are. This view
contrasts with what Toon [3.205, p. 43] and Levy [3.43,
p. 790] call a direct view of representation (Levy [3.206,
p. 741] earlier also referred to it as the worldly fic-
tion view). This view does not recognize model systems
and aims instead to explain epistemic representation as
a form of direct description. Model descriptions (like
the description of an ideal pendulum) provide an “imag-
inative description of real things” [3.206, p. 741] such
as actual pendula, and there is no such thing as a model
system of which the pendulum description is literally
true [3.205, pp. 43–44]. In what follows we use Toon’s
terminology and refer to this approach as direct repre-
sentation.

Toon and Levy both reject the indirect approach be-
cause of metaphysical worries about fictional entities,
and they both argue that the direct view has the con-
siderable advantage that it does not have to deal with
the vexed problem of the ontology of model systems
and their comparison with real things at all. Levy [3.43,
p. 790] sees his approach as “largely complimentary to
Toon’s”. So we first discuss Toon’s approach and then
turn to Levy’s.

Toon [3.48, 205, 228] takes as his point of departure
Walton’s [3.229] theory of representation in the arts. At
the heart of this theory is the notion of a game of make
believe. The simplest examples of these games are chil-
dren’s plays [3.229, p. 11]. In one such play we imagine
that stumps are bears and if we spot a stumpwe imagine
that we spot a bear. In Walton’s terminology the stumps
are props, and the rule that we imagine a bear when
we see a stump is a principle of generation. Together
a prop and a principle of generation prescribe what is
to be imagined. If a proposition is so prescribed to be
imagined, then the proposition is fictional in the rele-
vant game. The term fictional has nothing to do with
falsity; on the contrary, it indicates that the proposition
is true in the game. The set of propositions actually
imagined by someone need not coincide with the set

of all fictional propositions in game. It could be the
case that there is a stump somewhere that no one has
seen and hence no one imagines that it’s a bear. Yet the
proposition that the unseen stump is a bear is fictional
in the game.

Walton considers a vast variety of different props. In
the current context two kinds of props are particularly
important. The first are objects like statues. Consider
a statue showing Napoleon on horseback [3.205, p. 37].
The statue is the prop, and the games of make believe
for it are governed by certain principles of generation
that apply to statues of this kind. So when seeing the
statue we are mandated to imagine, for instance, that
Napoleon has a certain physiognomy and certain fa-
cial expressions. We are not mandated to imagine that
Napoleon was made of bronze, or that he hasn’t moved
for more than 100 years.

The second important kind of props are works of
literary fiction. In this case the text is the prop, which to-
gether with principles of generation appropriate for lit-
erary fictions of a certain kind, generates fictional truths
by prescribing readers to imagine certain things. For
instance, when reading The War of the Worlds [3.205,
p. 39] we are prescribed to imagine that the dome of St
Paul’s Cathedral has been attacked by aliens and now
has a gaping hole on its western side.

In Walton’s theory something is a representation
if it has the social function of serving as a prop in
a game of make believe, and something is an object of
a representation if the representation prescribes us to
imagine something about the object [3.229, pp. 35,39].
In the above examples the statue and the written text
are the props, and Napoleon and St Paul’s Cathe-
dral, respectively, are the objects of the representa-
tions.

The crucial move now is to say that models are
props in games of make believe. Specifically, material
models – such as an architectural model of the Forth
Road Bridge – are like the statue of Napoleon [3.205,
p. 37]: the model is the prop and the bridge is the ob-
ject of the representation. The same observation applies
to theoretical models, such as a mechanical model of
a bob bouncing on a spring. The model portrays the
bob as a point mass and the spring as perfectly elas-
tic. The model description represents the real ball and
spring system in the same way in which a literary text
represents its objects [3.205, pp. 39–40]: the model de-
scription prescribes imaginings about the real system –
we are supposed to imagine the real spring as perfectly
elastic and the bob as a point mass.

We now see why Toon’s account is a direct view
of modeling. Theoretical model descriptions represent
actual concrete objects: the Forth Road Bridge and
the bob on a spring. There is no intermediary en-
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tity of which model descriptions are literally true and
which are doing the representing. Models prescribe
imaginings about a real world target, and that is what
representation consists in.

This is an elegant account of representation, but it
is not without problems. The first issue is that it does
not offer an answer to the ER-problem. Imagining that
the target has a certain feature does not tell us how
the imagined feature relates to the properties the target
actually has, and so there is no mechanism to trans-
fer model results to the target. Imagining the pendulum
bob to be a point mass tells us nothing about which, if
any, claims about point masses are also true of the real
bob. Toon mentions this problem briefly. His response
is that [3.205, pp. 68–69]:

“Principles of generation often link properties of
models to properties of the system they represent in
a rather direct way. If the model has a certain prop-
erty then we are to imagine that system does too. If
the model is accurate, then the model and the sys-
tem will be similar in this respect. [. . . ] [But] not
all principles of generation are so straightforward.
[. . . ] In some cases similarity seems to play no role
at all.”

In as far as the transfer mechanism is similarity, the
view moves close to the similarity view, which brings
with it both some of the benefits and the problems we
have discussed in Sect. 3.3. The cases in which simi-
larity plays no role are left unresolved and it remains
unclear how surrogative reasoning with such models is
supposed to happen.

The next issue is that not all models have a target
system, which is a serious problem for a view that an-
alyzes representation in terms of imagining something
about a target. Toon is well aware of this issue and calls
them models without objects [3.205, p. 76]. Some of
these are models of discredited entities like the ether
and phlogiston, which were initially thought to have
a target but then turned out not to have one [3.205,
p. 76]. But not all models without objects are errors:
architectural plans of buildings that are never built or
models of experiments that are never carried out fall
into the same category [3.205, p. 76].

Toon addresses this problem by drawing another
analogy with fiction. He points out that not all novels
are like The War of the Worlds, which has an object.
Passages from Dracula, for instance, “do not repre-
sent any actual, concrete object but are instead about
fictional characters” [3.205, p. 54]. Models without
a target are like passages from Dracula. So the solu-
tion to the problem is to separate the two cases neatly.
When a model has target then it represents that target

by prescribing imaginings about the target; if a model
has no target it prescribes imaginings about a fictional
character [3.205, p. 54].

Toon immediately admits that models without tar-
gets “give rise to all the usual problems with fictional
characters” [3.205, p. 54]. However, he seems to think
that this is a problem we can live with because the
more important case is the one where models do have
a target, and his account offers a neat solution there.
He offers the following summative statement of his ac-
count [3.205, p. 62]:

Definition 3.13 Direct Representation
A scientific modelM represents a target system T iffM
functions as prop in game of make believe.

This definition takes it to be understood that the imagin-
ings prescribed are about the target T if there is a target,
and about a fictional character if there isn’t because
there need not be any object that the model prescribes
imaginings about [3.205, p. 81].

This bifurcation of imaginative activities raises
questions. The first is whether the bifurcation squares
with the face value practice. Toon’s presentation would
suggest that the imaginative practices involved in mod-
els with targets are very different from the ones involved
in models without them. Moreover, they require a dif-
ferent analysis because imagining something about an
existing object is different from imagining something
about a fictional entity. This, however, does not seem
to sit well with scientific practice. In some cases we are
mistaken: we think that the target exists but then find out
that it doesn’t (as in the case of phlogiston). But does
that make a difference to the imaginative engagement
with a phlogiston model of combustion? Even today we
can understand and use such models in much the same
way as its original protagonists did, and knowing that
there is no target seems to make little, if any, differ-
ence to our imaginative engagement with the model. Of
course the presence or absence of a target matters to
many other issues, most notably surrogative reasoning
(there is nothing to reason about if there is no target!),
but it seems to have little importance for how we imag-
inatively engage with the scenario presented to us in
a model.

In other cases it is simply left open whether there
is target when the model is developed. In elementary
particle physics, for instance, a scenario is often pro-
posed simply as a suggestion worth considering and
only later, when all the details are worked out, the ques-
tion is asked whether this scenario bears an interesting
relation to what happens in nature, and if so what the
relation is. So, again, the question of whether there is
or isn’t a target seems to have little, if any, influence
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on the imaginative engagement of physicists with sce-
narios in the research process. This does not preclude
different philosophical analyzes being given of mod-
eling with and without a target, but any such analysis
will have to make clear the commonalities between the
two.

Let us now turn to a few other aspects of direct
representation (Definition 3.13). The view successfully
solves the problem of asymmetry. Even if it uses sim-
ilarity in response to the ER-problem, the imaginative
process is clearly directed towards the target. An appeal
to imagination also solves the problem of misrepresen-
tation because there is no expectation that our imagina-
tions are correct when interpreted as statements about
the target. Given its roots in a theory of representation
in art, it’s natural to renounce any attempts to demarcate
scientific representation from other kinds of representa-
tion [3.205, p. 62]. The problem of ontology is dispelled
for representations with an object, but it remains unre-
solved for representations without one. However, direct
representation (Definition 3.13) offers at best a partial
answer to the ER-problem, and nothing is said about ei-
ther the problem of style and/or standards of accuracy.
Similarly, Toon remains silent about the applicability of
mathematics.

Levy also rejects an indirect view primarily because
of the unwieldiness of its ontology and endorses a di-
rect view of representation ([3.43, pp. 780–790], [3.206,
pp. 744–747]). Like Toon, he develops his version of
the direct view by appeal to Walton’s notion of prop-
oriented make believe. When, for instance, we’re asked
where in Italy the town of Crotone lies, we can be told
that it’s in the arch of the Italian boot. In doing so we
are asked to imagine something about the shape of Italy
and this imagination is used to convey geographical in-
formation. Levy then submits that “we treat models as
games of prop-oriented make believe” [3.206, p. 791].
Hence modeling consists in imagining something di-
rectly about the target.

Levy pays careful attention to the ER-problem.
In his [3.206, p. 744] he proposed that the prob-
lem be conceptualized in analogy with metaphors, but
immediately added that this was only a beginning
which requires substantial elaboration. In his [3.43,
pp. 792–796] he takes a different route and appeals to
Yablo’s [3.230] theory of partial truth. The core idea
of this view is that a statement is partially true “if it
is true when evaluated only relative to a subset of the
circumstances that make up its subject matter – the sub-
set corresponding to the relevant content-part” [3.43,
p. 792]. Levy submits that this will also work for
a number of cases of modeling, but immediately adds
that there are other sorts of cases that don’t fit the
mold [3.43, p. 794]. Such cases often are ones in which

distortive idealizations are crucial and cannot be set
aside. These require a different treatment and it’s an
open question what this treatment would be.

Levy offers a radical solution to the problem of mod-
els without targets: there aren’t any! He first broadens
the notion of a target system, allowing for models that
are only loosely connected to targets [3.43, pp. 796–
797]. To this end he appeals to Godfrey-Smith’s notion
of hub-and-spoke cases: families of models where only
some have a target (which makes them the hub mod-
els) and the others are connected to them via conceptual
links (spokes) but don’t have a specific target. Levy
points out that such cases should be understood as hav-
ing a generalized target. If something that looks like
a model doesn’t meet the requirement of having even
a generalized target, then it’s not a model at all. Levy
mentions structures like the game of life and observes
that they are “bits of mathematics” rather than mod-
els [3.43, p. 797]. This eliminates the need for fictional
characters in the case of targetless models.

This is a heroic act of liberation, but questions
about it remain. The direct view renders fictional enti-
ties otiose by positing that a model is nothing but an act
of imagining something about a concrete actual thing.
But generalized targets are not concrete actual things,
and often not even classes of such things. There is a se-
rious question whether one can still reap the (alleged)
benefits of a view that analyzes modeling as imagin-
ings about concrete things, if the things about which
we imagine something are no longer concrete. Popula-
tion growth or complex behavior are not concrete things
like rabbits and stumps, and this would seems to pull
the rug from underneath a direct approach to represen-
tation. Likewise, the claim that models without target
are just mathematics stands in need of further elucida-
tion. Looking back at Toon’s examples of such models,
a view that considers them just mathematics does not
come out looking very natural.

3.6.3 Parables and Fables

Cartwright [3.231] focuses on highly idealized models
such as Schelling’s model of social segregation [3.232]
and Pissarides’ model of the labor market [3.233].The
problem with these models is that the objects and sit-
uations we find in such models are not at all like the
things in the world that we are interested in. Cities
aren’t organized as checkerboards and people don’t
move according to simple algorithmic rules (as they do
in Schelling’s model), and there are no laborers who
are solely interested in leisure and income (as is the
case in Pissarides’ model). Yet we are supposed to learn
something about the real world from these models. The
question is how.
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Cartwright submits that an answer to this question
emerges from a comparison of models with narratives,
in particular fables and parables. An example of a fable
is the following: “A marten eats the grouse; a fox throt-
tles the marten; the tooth of the wolf, the fox. Moral: the
weaker are always prey to the stronger” [3.231, p. 20].
The characters in the fable are highly idiosyncratic, and
typically we aren’t interested in them per se – we don’t
read fables to learn about foxes and martens. What we
are interested in is the fable’s general and more abstract
conclusion, in the above example that the weaker are
always prey to the stronger. In the case of the fable
the moral is typically built in the story and explicitly
stated [3.231].

Cartwright then invites us to consider the parable
of the laborers in the vineyard told in the Gospel of
Matthew [3.231]. A man goes to the market to hire day
laborers. He hires the first group early in the morning,
and then returns several times during the day to hire
more laborers, and he hires the last group shortly before
dusk. Some worked all day, while some hardly started
when the day ended. Yet he pays the same amount to
all of them. Like in a fable, when engaging with a para-
ble the reader takes no intrinsic interest in the actors
and instead tries to extract a more general moral. But
unlike in fables, in parables no moral appears as part of
the parable itself [3.231, p. 29]. Hence parables need in-
terpretation, and alternative interpretations are possible.
The above fable is often interpreted as being about the
entry to God’s kingdom, but, as Cartwright observes,
it can just as well be interpreted as making the market-
based capitalist point that you get what you contract for,
and should not appeal to higher forms of justice [3.231,
p. 21].

These are features models share with fables and
parables: “like the characters in the fable, the objects
in the model are highly special and do not in general re-
semble the ones we want to learn about” [3.231, p. 20]
and the “lesson of the model is, properly, more abstract
than what is seen to happen in the model” [3.231, p. 28].
This leaves the question whether models are fables or
parables. Some models are like fables in that they have
the conclusion explicitly stated in them. But most mod-
els are like parables [3.231, p. 29]: their lesson is not
written in the models themselves [3.231, p. 21], and
worse: “a variety of morals can be attributed to the
models” [3.231, p. 21]. A model, just like a parable,
is interpreted against a rich background of theory and
observation, and the conclusion we draw depends to
a large extent on the background [3.231, p. 30].

So far the focus was on deriving a conclusion about
the model itself. Cartwright is clear that one more step
is needed: “In many cases we want to use the re-
sults of these models to inform our conclusions about

a range of actually occurring (so-called target) sit-
uations” [3.231, p. 22] (original emphasis). In fact,
making this transfer of model results to the real world is
the ER-problem. Unfortunately she does not offer much
by way of explaining this step and merely observes that
“a description of what happens in the model that does
not fit the target gets recast as one that can” [3.231,
p. 20]. This gestures in the right direction, but more
would have to be said about how exactly a model
description is recast to allow for transfer of model
results to target systems. In earlier work Cartwright
observed that what underlies the relationship between
models and their targets is a “loose notion of resem-
blance” [3.73, pp. 192–193] and [3.74, pp. 261–262].
This could be read as suggesting that she would en-
dorse some kind of similarity view of representation.
Such a view, however, is independent of an appeal to
fables and parables.

In passing we would like to mention that the same
kind of models is also discussed in Sugden [3.202, 210].
However, his interest is in induction rather than repre-
sentation, and if reframed in representational terms then
his account becomes a similarity account like Giere’s.
See Grüne-Yanoff [3.234] and Knuuttila [3.235] for
a discussion.

3.6.4 Against Fiction

The criticisms we have encountered above were intrin-
sic criticisms of particular versions of the fiction view,
and as such they presuppose a constructive engage-
ment with the view’s point of departure. Some critics
think that any such engagement is misplaced because
the view got started on the wrong foot entirely. There
are five different lines of attack. The first criticism is
driven by philosophical worries about fiction. Fictions,
so the argument goes, are intrinsically dubious and are
beset with so many serious problems that one should
steer away from them whenever possible. So it could
be claimed that assigning them a central role in sci-
ence is a manifestation of philosophical masochism.
This, however, overstates the problems with fictions.
Sure enough, there is controversy about fictions. But the
problems pertaining to fictions aren’t more devastating
than those surrounding other items on the philosophi-
cal curriculum, and these problems surely don’t render
fictions off limits.

The second criticism, offered for example by
Giere [3.97, p. 257], is that the fiction view – in-
voluntarily – plays into the hands of irrationalists.
Creationists and other science skeptics will find great
comfort, if not powerful rhetorical ammunition, in the
fact that philosophers of science say that scientists pro-
duce fiction. This, so the argument goes, will be seen
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as a justification of the view that religious dogma is
on par with, or even superior to, scientific knowledge.
Hence the fiction view of models undermines the au-
thority of science and fosters the cause of those who
wish to replace science with religious or other unscien-
tific worldviews.

Needless to say, we share Giere’s concerns about
creationism. In order not to misidentify the problem it
is important to point out that Giere’s claim is not that the
view itself – or its proponents – support creationism; his
worry is that the view is a dangerous tool when it falls
into the wrong hands. What follows from this, however,
is not that the fiction view itself should be abandoned;
but rather that some care is needed when dealing with
the press office. As long as the fiction view of models is
discussed in informed circles, and, when popularized,
is presented carefully and with the necessary qualifica-
tions, it is no more dangerous than other ideas, which,
when taken out of context, can be put to uses that would
(probably) send shivers down the spines of their pro-
genitors (think, for instance, of the use of Darwinism to
justify eugenics).

The third objection, also due to Giere, has it that
the fiction view misidentifies the aims of models. Giere
agrees that from an ontological point of view scientific
models and works of fictions are on par, but empha-
sizes that “[i]t is their differing function in practice that
makes it inappropriate to regard scientific models as
works of fiction” [3.97, p. 249]. Giere identifies three
functional differences [3.97, pp. 249–252]. First, while
fictions are the product of a single author’s individual
endeavors, scientific models are the result of a pub-
lic effort because scientists discuss their creations with
their colleagues and subject them to public scrutiny.
Second, there is a clear distinction between fiction
and nonfiction books, and even when a book classi-
fied as nonfiction is found to contain false claims, it
is not reclassified as fiction. Third, unlike works of
fiction, whose prime purpose is to entertain (although
some works can also give insight into certain aspects
of human life), scientific models are representations of
certain aspects of the world.

These observations, although correct in themselves,
have no force against the fiction view of models. First,
whether a fiction is the product of an individual or a col-
lective effort has no impact on its status as a fiction;
a collectively produced fiction is just a different kind
of fiction. Even if War and Peace (to take Giere’s ex-
ample) had been written in a collective effort by all
established Russian writers of Tolstoy’s time, it would
still be a fiction. Vice versa, even if Newton had never
discussed his model of the solar system with anybody
before publishing it, it would still be science. The his-
tory of production is immaterial to the fictional status

of a work. Second, as we have seen in Sect. 3.6.1, fal-
sity is not a defining feature of fiction. We agree with
Giere that there is a clear distinction between texts of
fiction and nonfiction, but we deny that this distinction
is defined by truth or falsity; it is the attitude that we are
supposed to adopt towards the text’s content that makes
the difference. Once this is realized, the problem fades
away. Third, many proponents of the fiction view (those
belonging to the first group mentioned in Sect. 3.6.1)
are clear that problems of ontology should be kept sep-
arate from function and agree that it is one of the prime
function of models to represent. This point has been
stressed by Godfrey-Smith [3.209, pp. 108–111] and it
is explicit in other views such as Frigg’s [3.203].

The fourth objection is due to Magnani, who dis-
misses the fiction view for misconstruing the role of
models in the process of scientific discovery. The fun-
damental role played by models, he emphasizes [3.236,
p. 3]:

“is the one we find in the core conceptual discov-
ery processes, and that these kinds of models cannot
be indicated as fictional at all, because they are
constitutive of new scientific frameworks and new
empirical domains.”

This criticism seems to be based on an understand-
ing of fiction as falsity because falsities can’t play
a constitutive role in the constitution of new empirical
domains. We reiterate that the fiction view is not com-
mitted to the fiction as falsity account and hence is not
open to this objection.

The fifth objection is that fictions are superfluous
and hence should not be regarded as forming part of
(let alone being) scientific models because we can give
a systematic account of how scientific models work
without invoking fictions. This point has been made
in different ways by Pincock [3.214, Chap. 12] and
Weisberg [3.33, Chap. 4] (for a discussion of Weis-
berg’s arguments see Odenbaugh [3.237]). We cannot
do justice to the details of their sophisticated arguments
here, and will concern ourselves only with their main
conclusion. They argue that scientific models are math-
ematical objects and that they relate to the world due to
the fact that there is a relationship between the mathe-
matical properties of the model and the properties found
in the target system (in Weisberg’s version similarity
relations to a parametrized version of the target). In
other words, models are mathematical structures and
they represent due to there being certain mathematical
relations between these structures and a mathematical
rendering of the target system. (Weisberg includes fic-
tions as convenient folk ontology that may serve as
a crutch when thinking about the model, but takes them
to be ultimately dispensable when it comes to explain-
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ing how models relate to the world.) This, however,
brings us back to a structuralist theory of representa-
tion, and this theory, as we have seen in Sect. 3.4, is

far from unproblematic. So it is at best an open ques-
tion whether getting rid of fiction provides an obvious
advantage.

3.7 Representation-as

In this section we discuss approaches that depart from
Goodman’s notion of representation-as [3.64]. In his
account of aesthetic representation the idea is that
a work of art does not just denote its subject, but more-
over it represents it as being thus or so. Elgin [3.34]
further developed this account and, crucially, suggested
that it also applies to scientific representations. This is
a vital insight and it provides the entry point to what
we think of as the most promising account of epistemic
representation.

In this section we present Goodman and Elgin’s
notion of representation-as, and outline how it is a com-
plex type of reference involving a mixture of denotation
and what they call exemplification. We introduce the
term of art representation-as to indicate that we are
talking about the specific concept that emerges from
Goodman’s and Elgin’s writings. We then discuss how
the account needs to be developed in the context of sci-
entific representation. And finally we present our own
answer to the ER-problem, and demonstrate how it an-
swers the questions laid out in Sect. 3.1.

3.7.1 Exemplification
and Representation-as

Many instances of epistemic representation are in-
stances of representation-as. Caricatures are paradig-
matic examples: Churchill is represented as a bulldog,
Thatcher is represented as a boxer, and the Olympic
Stadium is represented as a UFO. Using these carica-
tures we can attempt to learn about their targets: attempt
to learn about a politician’s personality or a building’s
appearance. The notion applies beyond caricatures.
Holbein’s Portrait of Henry VIII represents Henry as
imposing and powerful and Stoddart’s statue of David
Hume represents him as thoughtful and wise. The lead-
ing idea is that scientific representation works in much
the same way. A model of the solar system represents
the sun as perfect sphere; the logistic model of growth
represents the population as reproducing at fixed inter-
vals of time; and so on. In each instance, models can
be used to attempt to learn about their targets by de-
termining what the former represent the latter as being.
So representation-as relates, in a way to be made more
specific below, to the surrogative reasoning condition
discussed in Sect. 3.1.

The locution of representation-as functions in the
following way: An object X (e.g., a picture, statue, or
model) represents a subject Y (e.g., a person or target
system) as being thus or so (Z). The question then is
what establishes this sort of representational relation-
ship? The answer requires presenting some of the tools
Goodman and Elgin use to develop their account of
representation-as.

One of the central posits of Goodman’s account is
that denotation is “the core of representation” [3.64,
p. 5]. Stoddart’s statue of David Hume denotes Hume
and a model of the solar system denotes the solar sys-
tem. In that sense the statue and the model are represen-
tations of their respective targets. To distinguish repre-
sentation of something from other notions of represen-
tation we introduce the technical term representation-
of. Denotation is what establishes representation-of.
(For a number of qualifications and caveats about de-
notation see our [3.238, Sect. 2]).

Not all representations are a representation-of.
A picture showing a unicorn is not a representation-of
a unicorn because things that don’t exist can’t be de-
noted. Yet there is a clear sense in which such a picture
is a representation. Goodman and Elgin’s solution to
this is to distinguish between being a representation-of
something and being a something-representation ([3.34,
pp. 1–2], [3.64, pp. 21–26]). What makes a picture
a something-representation (despite the fact it may fail
to denote anything) is that it is the sort of symbol that
denotes. Elgin argues [3.34, pp. 1–2]:

“A picture that portrays a griffin, a map that maps
the route to Mordor [. . . ] are all representations,
although they do not represent anything. To be
a representation, a symbol need not itself denote,
but it needs to be the sort of symbol that denotes.
Griffin pictures are representations then because
they are animal pictures, and some animal pictures
denote animals. Middle Earth maps are representa-
tions because they are maps and some maps denote
real locations. [. . . ] So whether a symbol is a rep-
resentation is a question of what kind of symbol it
is.”

These representations can be classified into gen-
res, in a way that does not depend on what they are
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representations-of (since some may fail to denote), but
instead on what they portray. In the case of pictures,
this is fairly intuitive (how this is to be developed in
the case of scientific models is discussed below). If
a picture portrays a man, it is a man-representation,
if it portrays a griffin it is a griffin-representation and
so on. In general, a picture X is Z-representation if it
portrays Z. The crucial point is that this does not pre-
suppose that X be a representation-of Z; indeed X can be
Z-representation without denoting anything. A picture
must denote a man to be a representation-of a man. But
it need not denote anything to be a man-representation.

The next notion we need to introduce is exempli-
fication. An item exemplifies a property if it at once
instantiates the property and refers to it [3.64, p. 53]:

“Exemplification is possession plus reference. To
have without symbolizing is merely to possess,
while to symbolize without having is to refer in
some other way than by exemplifying.”

Exemplification is a mode of reference that holds
between items and properties. In the current context
properties are to be understood in the widest pos-
sible sense. An item can exemplify one-place prop-
erties, multi-place properties (i. e., relations), higher
order properties, structural properties, etc. Paradigmatic
examples of exemplification are samples. A chip of
paint on a manufacturer’s sample card both instanti-
ates a certain color, and at the same time refers to that
color [3.239, p. 71].

But although exemplification requires instantiation,
not every property instantiated by an object is exem-
plified by it. The chip of paint does not, for example,
exemplify its shape or its location on the card. In order
to exemplify a property, an object must both instantiate
the property and the property itself must be made epis-
temically salient. How saliency is established will be
determined on a case-by-case basis, and we say more
about this below.

We can now turn to the conditions under which X
represents Y as Z. A first stab would be to say that X
represents Y as Z if X is a Z-representation and denotes
Y . This however, is not yet good enough. It is important
that properties of Z are transferred to Y . Elgin makes
this explicit [3.34, p. 10]:

“[X] does not merely denote [Y] and happen to
be a [Z]-representation. Rather in being a [Z]-
representation, [X] exemplifies certain properties
and imputes those properties or related ones to
[Y]. [. . . ] The properties exemplified in the [Z]-
representation thus serve as a bridge that connects
[X] to [Y].”

This gives a name to the crucial step: imputation.
This step can be analyzed in terms of stipulation by
a user of a representation. When someone uses X as
a representation-as, she has to stipulate that certain
properties that are exemplified in X be imputed to Y .
We emphasize that imputation does not imply truth: Y
may or may not have the properties imputed to it by X.
So the representation can be seen as generating a claim
about Y that can be true or false; it should not be under-
stood as producing truisms.

Applied to scientific models, the account of epis-
temic representation that emerges from Goodman and
Elgin’s discussion of representation can then be sum-
marized as follows:

Definition 3.14 Representation-As
A scientific modelM represents a target system T iff:

1. M denotes T
2. M is a Z-representation exemplifying properties

P1; : : : ;Pn

3. P1; : : : ;Pn, or related properties, are imputed to T .

It should be added that the first condition can easily
be extended to include part-part denotation. In a fam-
ily portrait the entire portrait denotes the family; at the
same time a part of the portrait can denote the mother
and another part the father. This is obvious and unprob-
lematic.

We think that this account is on the right track, but
all three conditions need to be further developed to fur-
nish a full-fledged account of epistemic representation
(at least as applied to scientific models). The develop-
ments needed are of different kinds, though. The first
condition needs more specificity. How is denotation
characterized? What different ways of establishing de-
notation are there? And how is denotation established
in particular cases? These are but some of the questions
that a complete account of epistemic representation will
have answer. In many cases epistemic representation
seems to borrow denotation from linguistic descrip-
tions in which they are embellished and denotation is
in effect borrowed from language. So the philosopher
of science can turn to the philosophy of language to
get a deeper understanding of denotation. This is an
interesting project, but it is not one we can pursue
here.

In contrast with denotation the other two conditions
need to be reformulated because an account molded on
visual representations is only an imperfect match for
scientific representations. This is the task for the next
section.
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3.7.2 From Pictures to Models:
The Denotation, Exemplification,
Keying-up and Imputation Account

According to Goodman and Elgin, for a picture to
be a Z-representation it has to be the kind of symbol
that denotes. On the face of it, there is a mismatch
between pictures and scientific models in this regard.
The Schelling model represents social segregation with
a checkerboard; billiard balls are used to represent
molecules; the Phillips–Newlyn model uses a system
of pipes and reservoirs to represent the flow of money
through an economy; and the worm Caenorhabditis ele-
gans is used as a model of other organisms. But neither
checkerboards, billiard balls, pipes, or worms seem to
belong to classes of objects that typically denote. The
same observation applies to scientific fictions (friction-
less planes, utility maximizing agents, and so on) and
the mathematical objects used in science. In fact, ma-
trices, curvilinear geometries, Hilbert spaces etc. were
all studied as mathematical objects before they became
important in the empirical sciences.

Rather than relying on the idea that scientific mod-
els belong to classes of objects that typically denote
we propose directly introducing an agent and ground
representation in this agent’s actions. Specific checker-
boards, systems of pipes, frictionless places and math-
ematical structures, are epistemic representations be-
cause they are used by an agent to represent a system.
When an agent uses an object as a representation, we
call it a base.

What allows us to classify bases into Z-representa-
tions is also less clear in the case of scientific represen-
tation. We approach this issue in two steps. The first is
to recognize the importance of the intrinsic constitution
of the base. Pictures are typically canvases covered with
paint. They are classified as Z-representations because
under appropriate circumstances the canvas is recog-
nized as portraying a Z. Much can be said about the
canvas’ material constitution (the thickness or chemical
constitution of the paint, etc.), but these are generally
of little interest to understanding what the picture por-
trays. By contrast, the properties of a scientific model –
qua material object – do matter. How water flows
through the pipes in the Phillips–Newlyn model is cru-
cial to how it represents the movement of money in
an economy. That Caenorhabditis elegans is a biolog-
ical organism is of vital importance for how it is used
representationally. In fact, models are frequently clas-
sified according to what their material base is. We talk
about a pipe model of the economy or worm model of
cell division because their bases are pipes and worms.
Here we introduce a term of art to recognize that scien-
tific models are generally categorized according to their

material constitution. An O-object specifies the kind of
object something is, qua physical object.

O-objects become representations when they are
used as such. But how are they classified as Z-
representations? How does the Phillips–Newyln ma-
chine become an economy-representation, or how
does a collection of billiard balls become a gas-
representation? (Again, recall that this is not because
they denote economies or gases.) We suggest, and this
is the second step, that this requires an act of inter-
pretation (notice that we do not use interpretation in
the same sense as Contessa). In the case of pictures,
the nature of this interpretation has been the center of
attention for a good while: how one sees a canvas cov-
ered with paint as showing a cathedral is regarded by
many as one of the important problems of aesthetics.
Schier [3.240, p. 1] dubbed it the “enigma of depic-
tion”, and an entire body of literature is been concerned
with it (Kulvicki [3.241] provides a useful review). In
the case of scientific models we don’t think a simple and
universal account of how models are interpreted as Z-
representations can be given. Interpreting an O-object
as a Z-representation requires attributing properties of
Zs to the object. How this is done will depend on disci-
plinary traditions, research interests, background theory
and much more. In fact, interpretation is a blank to
be filled, and it will be filled differently in different
cases.

Some examples should help elucidate what we
mean by this. In the case of scale models the interpre-
tation is close to the O-object in that it interprets the
object in its own terms. The small car is interpreted as
a car-representation and the small ship is interpreted as
a ship-representation. Likewise, in the case of the Army
Corps’ model of the San Francisco bay [3.33], parts of
the model bay are interpreted in terms of the real bay.
In cases like these, the same predicates that apply to
the base (qua O-object) are applied to the object in or-
der to make it into a Z-representation (here OD Z). But
this is not always the case. For example, the Phillips–
Newlyn machine is a system of pipes and reservoirs, but
it becomes an economy-representation only when the
quantity and flow of water throughout the system are
interpreted as the quantity and flow of money through-
out an economy. The system is interpreted in terms of
predicates that do not apply to the object (quaO-object),
but turn it into a Z-representation (here O and Z come
apart). In sum, an O-object that has been chosen as the
base of a representation becomes a Z-representation if
O is interpreted in terms of Z.

Next in line is exemplification. Much can be said
about exemplification in general, but the points by and
large carry over from the general discussion to the case
of models without much ado. There is one difference,
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though, in cases like the Phillips–Newlyn machine. Re-
call that exemplification was defined as the instantiation
of a property P by an object in such a way that the object
thereby refers to P. How can the Phillips–Newlyn ma-
chine exemplify economic properties when it does not,
strictly speaking, instantiate them? The crucial point is
that nothing in the current account depends on instan-
tiation being literal instantiation. On this point we are
in agreement with Goodman and Elgin, whose account
relies on nonliteral instantiation. The portrait of Henry
cannot, strictly speaking, instantiate the property of be-
ing male, even if it represents him as such. Goodman
and Elgin call this metaphorical instantiation ([3.64,
pp. 50–51], [3.239, p. 81]).

What matters is that properties are epistemically
accessible and salient, and this can be achieved with
what we call instantiation-under-an-interpretation I,
I-instantiation for short. An economic interpretation
of the Phillips–Newlyn machine interprets amounts
of water as amounts of money. It does so by in-
troducing a clearly circumscribed rule of proportion-
ality: x liters of water correspond to y millions of
the model-economy’s currency. This rule is applied
without exception when the machine is interpreted as
an economy-representation. So we say that under the
economic interpretation Ie the machine Ie-instantiates
money properties. With the notion of I-instantiation at
hand, exemplification poses no problem.

The final issue to clear is the imputation of the
model’s exemplified properties to the target system.
In particular, which properties are so imputed? Elgin
describes this as the imputation of the properties ex-
emplified by M or related ones. The observation that
the properties exemplified by a scientific model and the
properties imputed to its target system need not be iden-
tical is correct. In fact, few, if any, models in science
portray their targets as exhibiting exactly the same fea-
tures as the model itself. The problem with invoking
related properties is not its correctness, but its lack of
specificity. Any property can be related to any other
property in someway or other, and as long as no specific
relation is specified it remains unclear which properties
are imputed onto the system.

In the context of science, the relation between the
properties exemplified and the ones ascribed to the
system is sometimes described as one of simplifica-
tion [3.198, p. 184], idealization [3.198, p. 184] and
approximation [3.34, p. 11]. This could suggest that re-
lated ones means idealized, at least in the context of
science (we are not attributing this claim to Elgin; we
are merely considering the option), perhaps similar to
the way in which Ducheyne’s account discussed above
took target properties to be approximations of model
properties. But shifting from related to idealized or

approximated (or any of their cognates) makes things
worse, not better. For one, idealization can mean very
different things in different contexts and hence describ-
ing the relation between two properties as idealization
adds little specificity (see Jones [3.242] for a discussion
of different kinds of idealization). For another, while the
relationship between some representation-target prop-
erties may be characterized in terms of idealization,
many cannot. A map of the world exemplifies a distance
of 29 cm between the two points labeled Paris and New
York; the distance between the two cities is 5800km;
but 29 cm is not an idealization of 5800km. A scale
model of a ship being towed through water is not an
idealization of an actual ship, at least not in any obvious
way. Or in standard representations of Mandelbrod sets
the color of a point indicates the speed of divergence of
an iterative function for certain parameter value associ-
ated with that point, but color is not an idealization of
divergence speed.

For this reason it is preferable, in our view, to build
a specification of the relationship between model prop-
erties and target properties directly into an account of
epistemic representation. Let P1; : : : ;Pn be the proper-
ties exemplified byM, and letQ1; : : : ;Qm be the related
properties thatM imputes to Y (where n and m are pos-
itive natural numbers that can but need not be equal).
Then the representation M must come with a key K
that specifies how exactly P1; : : : ;Pn are converted into
Q1; : : : ;Qm [3.50]. Borrowing notation from algebra
(somewhat loosely) we can write K.hP1; : : : ;Pni/D
hQ1; : : : ;Qmi. K can, but need not be, the identity func-
tion; any rule that associates a unique set Q1; : : : ;Qm

with P1; : : : ;Pn is admissible. The relevant clause in
the definition of representation-as then becomes: M
exemplifies P1; : : : ;Pn and the representation imputes
properties Q1; : : : ;Qm to T where the two sets of prop-
erties are connected to each other by a key K.

The above examples help illustrate what we have
in mind. Let us begin with the example of the map (in
fact the idea of a key is motivated by a study of maps;
for a discussion of maps see Galton [3.243] and Sis-
mondo and Chrisman [3.244]). P is a measured distance
on the map between the point labeled New York and
the point labeled Paris; Q is the distance between New
York and Paris in the world; and K is the scale of the
map (in the above case, 1 W 20000000). So the key al-
lows us to translate a property of the map (the 29 cm
distance) into a property of the world (that New York
and Paris are 5800km apart). But the key involved in
the scale model of the ship is more complicated. One of
the Ps in this instance is the resistance the model ship
faces when moved through the water in a tank. But this
doesn’t translate into the resistance faced by the actual
ship in the same way in which distances in a map trans-
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late into distances in reality. In fact, the relation between
the resistance of the model and the resistance of the
real ship stand in a complicated nonlinear relationship
because smaller models encounter disproportionate ef-
fects due to the viscosity of the fluid. The exact form
of the key is often highly nontrivial and emerges as
the result of a thoroughgoing study of the situation;
see Sterrett [3.245] for a discussion of fluid mechan-
ics. In the representation of the Madelbrod set in [3.246,
p. 660] a key is used that translates color into divergence
speed [3.246, p. 695]. The square shown is a segment of
the complex plane and each point represents a complex
number. This number is used as parameter value for an
iterative function. If the function converges for number
c, then the point in the plane representing c is colored
black. If the function diverges, then a shading from yel-
low over green to blue is used to indicate the speed of
divergence, where yellow is slow, green is in the middle
and blue is fast.

Neither of these keys is obvious or trivial. Deter-
mining how to move from properties exemplified by
models to properties of their target systems can be
a significant task, and should not go unrecognized in
an account of scientific representation. In general K is
a blank to be filled, and it depends on a number of fac-
tors: the scientific discipline, the context, the aims and
purposes for which M is used, the theoretical backdrop
against whichM operates, etc. Building K into the defi-
nition of representation-as does not prejudge the nature
of K, much less single out a particular key as the correct
one. The requirement merely is that there must be some
key forM to qualify as a representation-as.

With these modifications in place we can now for-
mulate our own account of representation [3.238, 247].
Consider an agent who chooses an O-object as the base
of representation and turns it into Z-representation by
adopting an interpretation I. Let M refer to the package
of the O-object together with the interpretation I that
turns it into a Z-representation. Then:

Definition 3.15 DEKI
A scientific modelM represents a target T iff:

1. M denotes T (and, possibly, parts ofM denote parts
of T)

2. M is a Z-representation exemplifying properties
P1; : : : ;Pn

3. M comes with a key, K, specifying how P1; : : : ;Pn

are translated into a set of features Q1; : : : ;Qm:
K.hP1; : : : ;Pni/D hQ1; : : : ;Qmi

4. The model imputes at least one of the properties
Q1; : : : ;Qm onto T .

We call this the DEKI account of representation to
highlight its key features: denotation, exemplification,
keying-up and imputation.

Before highlighting some issues with this account,
let us clarify how the account answers the questions
we laid out in Sect. 3.1. Firstly, as an answer to the
ER-problem, DEKI (Definition 3.15) provides an ab-
stract framework in which to think about epistemic
representation. In general, what concretizes each of the
conditions needs to be investigated on a case-by-case
basis. But far from being a defect, this degree of ab-
stractness is an advantage. Epistemic representation,
and even the narrower model-representation, are um-
brella terms covering a vast array of different activities
in different fields, and a view that sees representations
in fields as diverse as elementary particle physics, evo-
lutionary biology, hydrology and rational choice theory
work in exactly the same way is either mistaken or too
coarse to make important features visible. DEKI (Def-
inition 3.15) occupies the right middle ground: it is
general enough to cover a large array of cases and yet it
highlights what all instances of scientific representation
have in common. At the same time the account offers an
elegant solution to the problem of models without tar-
gets: a model that apparently represents Z while there is
no Z is a Z-representation but not representation of a Z.

It should be clear how we can use models to per-
form surrogative reasoning about their targets according
to DEKI (Definition 3.15). The account requires that
we investigate the properties that are exhibited by the
model. These are then translated into a set of properties
that are imputed onto the target. This act of imputation
supplies a hypothesis about the target system: does it,
or does it not, have those properties? This hypothesis
does not have to be true, and as such DEKI (Defini-
tion 3.15) allows for the possibility of misrepresentation
in a straightforward manner.

DEKI’s (Definition 3.15) abstract character also al-
lows us to talk about different styles of representation.
Style, on the DEKI (Definition 3.15) account, is not
a monolithic concept; instead it has several dimensions.
Firstly, different O-objects can be chosen. In this way
we may speak, say, of the checkerboard style and of the
cellular automaton style. In each case a specific kind of
object has been chosen for various modeling purposes.
Secondly, the notion of an interpretation allows us to
talk about how closely connected the properties of the
model are to those that the object I-instantiates. Thirdly,
different types of keys could be used to characterize dif-
ferent styles. In some instances the key might be the
identity key, which would amount to a style of model-
ing that aims to construct replicas of target systems; in
other cases the key incorporates different kinds of ideal-
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izations or abstractions, which gives rise to idealization
and abstraction keys. But different keys may be associ-
ated with entirely different representational styles.

Similarly, DEKI (Definition 3.15) suggests that
there is no significant difference between scientific
representations and other kinds of epistemic representa-
tion, at least at the general level. However, this is not to
say that the two cannot be demarcated whatsoever. The
sorts of interpretations under which pictures portray Zs
seem to be different to the sorts of interpretations that
are adopted in the scientific framework. Whether or not
this can be cashed of more specifically is an interesting
question that we cannot investigate here.

Many details in DEKI (Definition 3.15) still need to
be spelled out. But the most significant difficulty, per-
haps, arises in connection with the problem of ontology.
It is not by accident that we have illustrated the account
with a physical model, the Phillips–Newlyn machine.
Exemplification requires instantiation, which is easily
understood for material models, but is highly problem-
atic in the context of nonconcrete models. One option
is to view models as fictional entities as discussed in
Sect. 3.6. But whether, and if so how, fictional entities
instantiate properties is controversially discussed and
more philosophical work is needed to make sense of
such a notion. It is therefore an open question how this
account works for nonconcrete models; for a discussion
and a proposal see Frigg and Nguyen [3.248].

Finally, the account provides us with resources with
which to think about the applicability of mathematics.

Like the problem of style, various options are avail-
able. Firstly, mathematical structures themselves can be
taken to be O-objects and feature as bases of repre-
sentation. They can be interpreted on their own terms
and therefore exemplify strictly mathematical proper-
ties. If one were of a structuralist bent, then the ap-
propriate mathematical properties could be structural,
which could then be imputed onto the target system
(although notice that this approach faces a similar prob-
lem to the question of target-end structure discussed
in Sect. 3.4.4). Alternatively, the key could provide
a translation of these mathematical properties into ones
more readily applicable to physical systems. A third
alternative would be to take scientific models to be fic-
tional objects, and then adopt an interpretation towards
them under which they exemplify mathematical prop-
erties. Again, these could be imputed directly onto the
target system, or translated into an alternative set of
properties. Finally, these fictional models could them-
selves exemplify physical properties, but in doing so
exemplify structural ones as well. Whenever a physi-
cal property is exemplified, this provides an extensional
relation defined over the objects that instantiate it. The
pros and cons of each of these approaches demands fur-
ther research, but for the purposes of this chapter we
simply note that DEKI (Definition 3.15) puts all of these
options on the table. Using the framework of O-objects,
interpretations, exemplification, keys, and imputation
provides a novel way in which to think about the ap-
plicability of mathematics.

3.8 Envoi
We reviewed theories of epistemic representation. That
each approach faces a number of challenges and that
there is no consensus on the matter will not have come
as a surprise to anybody. We hope, however, that we
managed to map the lay of the land and to uncover the
fault lines, and thereby aid future discussions.
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4. Models and Explanation

Alisa Bokulich

Detailed examinations of scientific practice have
revealed that the use of idealized models in the
sciences is pervasive. These models play a central
role in not only the investigation and prediction
of phenomena, but also in their received scien-
tific explanations. This has led philosophers of
science to begin revising the traditional philo-
sophical accounts of scientific explanation in order
to make sense of this practice. These new model-
based accounts of scientific explanation, however,
raise a number of key questions: Can the fictions
and falsehoods inherent in the modeling prac-
tice do real explanatory work? Do some highly
abstract and mathematical models exhibit a non-
causal form of scientific explanation? How can one
distinguish an exploratory how-possibly model
explanation from a genuine how-actually model
explanation? Do modelers face tradeoffs such that
a model that is optimized for yielding explana-
tory insight, for example, might fail to be the most
predictively accurate, and vice versa? This chapter
explores the various answers that have been given
to these questions.
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Explanation is one of the central aims of science, and
the attempt to understand the nature of scientific ex-
planation is at the heart of the philosophy of science.
An explanation can be analyzed as consisting of two
parts, a phenomenon or event to be explained, known
as the explanandum, and that which does the job of ex-
plaining, the explanans. On the traditional approach, to
explain a phenomenon is either to deduce the explanan-
dum phenomenon from the relevant laws of nature and
initial conditions, such as on the deductive-nomological
(DN) account [4.1], or to trace the detailed causal
chain leading up to that event, such as on the causal–
mechanical account [4.2]. Underlying this traditional
approach are the assumptions that, in order to genuinely
explain, the explanansmust be entirely true, and that the
more complete and detailed the explanans is, the better
the scientific explanation.

As philosophers of science have turned to more
careful examinations of actual scientific practice, how-
ever, there have been three key observations that have
challenged this traditional approach: first, many of
the phenomena scientists seek to explain are incred-
ibly complex; second, the laws of nature supposedly
needed for explanation are either few and far between
or entirely absent in many of the sciences; and third,
a detailed causal description of the chain of events and
interactions leading up to a phenomenon are often either
beyond our grasp or not in fact what is most important
for a scientific understanding of the phenomenon.

More generally, there has been a growing recog-
nition that much of science is a model-based activity.
(For an overview of many different types of models in
science, and some of the philosophical issues regard-
ing the nature and use of such models, refer to [4.3]).
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Models are by definition incomplete and idealized de-
scriptions of the systems they describe. This practice
raises all sorts of epistemological questions, such as
how can it be that false models lead to true insights?

And most relevant to our discussion here, how might
the extensive use of models in science lead us to
revise our philosophical account of scientific explana-
tion?

4.1 The Explanatory Function of Models

Model-based explanations (or model explanations, for
short) are explanations in which the explanans appeal to
certain properties or behaviors observed in an idealized
model or computer simulation as part of an explanation
for why the (typically real-world) explanandum phe-
nomenon exhibits the features that it does. For example,
one might explain why sparrows of a certain species
vary in their feather coloration from pale to dark by
appealing to a particular game theory model: although
coloration is unrelated to fitness, such a polymorphism
can be a badge of status that allows the sparrows to
avoid unnecessary conflicts over resources; dark birds
are dominant and displace the pale birds from food
sources. The model demonstrates that such a strategy
is stable and successful, and hence can be used as part
of the explanation for why we find this polymorphism
among sparrows (see [4.4, 5] for further discussion).

There are, of course, many perils in assuming that
just because we see a phenomenon or pattern exhibited
in a model that it therefore explains why we see it in the
real world: the same pattern or phenomenon could be
produced in multiple, very different ways, and hence it
might be only a phenomenological model at best, useful
for prediction, but not a genuine explanation. Explana-
tion and the concomitant notion of understanding are
what we call success terms: if the purported explana-
tion is not, in fact, right (right in some sense that will
need to be spelled out) and the understanding is only
illusory, then it is not, in fact, a genuine explanation.
Determining what the success conditions are for a gen-
uine explanation is the central philosophical problem in
scientific explanation.

Those who have defended the explanatory power
of models have typically argued that further condi-
tions must be met in order for a model’s exhibiting
of a salient pattern or phenomenon to count as part of
a genuine explanation of its real-world counterpart. Not
all models are explanatory, and an adequate account of
model explanation must provide grounds for making
such discriminations. As we will see, however, differ-
ent approaches have filled in these further requirements
in different ways.

One of the earliest defenses of the view that models
can explain is McMullin’s [4.6] hypothetico-structural
HS account of model explanations. In an HS expla-
nation, one explains a complex phenomenon by pos-

tulating an underlying structural model whose features
are causally responsible for the phenomenon to be ex-
plained. McMullin notes that such models are often
tentative or metaphorical, but that a good model expla-
nation will lay out a research program for the further
refinement of the model. On his account, the justifi-
cation of the model as genuinely explanatory involves
a process known as de-idealization, where features that
were left out are added back or a more realistic repre-
sentation of those processes is given. More specifically
he requires that one be able to give a theoretical justi-
fication for this de-idealization process, so that it is not
merely an ad hoc fitting of the model to the data. He
writes [4.7, p. 261]:

“If techniques for which no theoretical justification
can be given have to be utilized to correct a formal
idealization, this is taken to count against the ex-
planatory propriety of that idealization. The model
itself in such a case is suspect, no matter how good
the predictive results it may produce.”

He further notes that a theoretical justification for
the de-idealization process will only succeed if the orig-
inal model has successfully captured the real structure
of the phenomenon of interest.

As an example,McMullin [4.8] describes the fertil-
ity of the continental drift model in explaining why the
continents seem to fit together like pieces of a puzzle
and why similar fossils are found at distant locations.
The continental drift model involved all sorts of ideal-
izations and gaps: most notably, the chief proponent of
this approach, Alfred Wegener, could offer no account
of the forces or mechanisms by which the massive con-
tinents could move. Strictly speaking, we now know
that the continental drift model is false, and has been
supplanted by plate tectonics. But as McMullin notes,
the continental drift model nonetheless captures key
features of the real structure of the phenomenon of
interest, and, hence, succeeds in giving genuine ex-
planatory insight.

While McMullin’s account of HS model explana-
tions fits in many cases, there are other examples of
model explanations in the sciences that do not seem
to fit his account. First, there seem to be examples
of model explanations where the idealizations are in-
eliminable, and, hence, they cannot be justified through

lmagnani@unipv.it



Models and Explanation 4.1 The Explanatory Function of Models 105
Part

A
|4.1

anything like the de-idealization analysis that McMullin
describes [4.9]. Second, not all models are related to
their target phenomena via an idealization: some mod-
els represent through a fictionalization [4.10]. Third,
insofar asMcMullin’s HSmodel explanations are a sub-
species of causal explanations, they do not account for
noncausal model explanations. These sort of cases will
be discussed more fully in subsequent sections.

Another early account of the explanatory power
of models is Cartwright’s [4.11] simulacrum account
of explanation, which she introduces as an alternative
to the DN account of explanation and elaborates in
her book How the Laws of Physics Lie. Drawing on
Duhem’s [4.12] theory of explanation, she argues [4.11,
p. 152]:

“To explain a phenomenon is to find a model that
fits it into the basic framework of the theory and that
thus allows us to derive analogues for the messy and
complicated phenomenological laws which are true
of it.”

According to Cartwright, the laws of physics do
not describe our real messy world, only the idealized
world we construct in our models. She gives the exam-
ple of the harmonic oscillator model, which is used in
quantum mechanics to describe a wide variety of sys-
tems. One describes a real-world helium-neon laser as
if it were a van der Pol oscillator; this is how the phe-
nomenon becomes tractable and we are able to make
use of the mathematical framework of our theory. The
laws of quantum mechanics are true in this model, but
this model is just a simulacrum of the real-world phe-
nomenon. By model, Cartwright means “an especially
prepared, usually fictional description of the system un-
der study” [4.11, p. 158]. She notes that while some of
the properties ascribed to the objects in the models are
idealizations, there are other properties that are pure fic-
tions; hence, one should not think of models in terms of
idealizations alone.

Although Cartwright’s simulacrum account is
highly suggestive, it leaves unanswered many key ques-
tions, such as when a model should or should not
be counted as explanatory. Elgin and Sober [4.13] of-
fer a possible emendation to Cartwright’s account that
they argue discriminates which sorts of idealized causal
models can explain. The key, according to their ap-
proach, is to determine whether or not the idealizations
in the model are what they call harmless. A harmless
idealization is one that if corrected “wouldn’t make
much difference in the predicted value of the effect
variable” [4.13, p. 448]. They illustrate this approach
using the example of optimality models in evolutionary
biology. Optimality models are models that determine
what value of a trait maximizes fitness (is optimal) for

an organism given certain constraints (e.g., the opti-
mal length of a bear’s fur, given the benefits of longer
fur and the costs of growing it, or the optimal height
at which crows should drop walnuts in order to crack
open the shells, given the costs of flying higher, etc.).
If organisms are indeed fitter the closer a trait is to
the optimal value, and if natural selection is the only
force operating, then the optimal value for that trait will
evolve in the population. Thus, optimality models are
used to explain why organisms have trait values at or
near the optimal value (e.g., why crows drop walnuts
from an average of 3m high [4.14]).

As Elgin and Sober note, optimality models contain
all sorts of idealizations: “they describe evolutionary
trajectories of populations that are infinitely large in
which reproduction is asexual with offspring always
resembling their parents, etc.” [4.13, p. 447]. Nonethe-
less, they argue that these models are genuinely ex-
planatory when it can be shown that the value described
in the explanandum is close to the value predicted by the
idealized model; when this happens we can conclude
that the idealizations in the model are harmless [4.13,
p. 448]. Apart from this concession about harmless ide-
alizations, Elgin and Sober’s account of explanation
remains close to the traditional DN account in that they
further require:

1. The explanans must cite the cause of the explanan-
dum

2. The explanans must cite a law
3. All of the explanans propositionsmust be true [4.13,

p. 446]

though their condition 3 might better be stated as all
the explanans propositions are either true or harmlessly
false.

As a general account of model explanations, how-
ever, one might argue that the approaches of Cartwright,
Elgin, and Sober are too restrictive. As noted before,
this approach still depends on there being laws of nature
from which the phenomenon is to be derived, and such
laws just might not be available. Moreover, it is not clear
that explanatory models will contain only harmless ide-
alizations. There may very well be cases in which the
idealizations make a difference (are not harmless) and
yet are essential to the explanation (e.g., [4.15, 16]).

While the simulacrum approach of Cartwright,
especially as further developed by Elgin and Sober,
largely draws its inspiration from the traditional DN
approach to explanation, there are other approaches
to model explanation that are tied more closely to the
traditional causal–mechanical approach to explanation.
Craver [4.17], for example, has argued that models are
explanatory when they describe mechanisms. He writes
“[. . . ] the distinction between explanatory and nonex-
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planatorymodels is that the [former], and not the [latter]
describe mechanisms” [4.17, p. 367]. The central notion
of mechanism, here, can be understood as consisting
of the various components or parts of the phenomenon
of interest, the activities of those components, and how
they are organized in relation to each other.

Craver imposes rather strict conditions on when
such mechanistic models can be counted as explana-
tory; he writes, “To characterize the phenomenon cor-
rectly and completely is the first restrictive step in
turning a model into an acceptable mechanistic expla-
nation” [4.17, p. 369]. (Some have argued that if one
has a complete and accurate description of the sys-
tem or phenomenon of interest, then it is not clear that
one has a model [4.18]). Craver analyzes the example
of the Hodgkin–Huxley mathematical model of the ac-
tion potential in an axon (nerve fiber). Despite the fact
that this model allowed Hodgkin and Huxley to derive
many electrical features of neurons, and the fact that it
was based on a number of fundamental laws of physics
and chemistry, Craver argues that it was not in fact an
explanatory model. He describes it instead as merely
a phenomenological model because it failed to accu-
rately describe the details of the underlying mechanism.

A similar mechanistic approach to model explana-
tion has been developed by Kaplan [4.19], who intro-
duces what he calls the mechanism–model–mapping
(or 3M) constraint. He defines the 3M constraint as fol-
lows [4.19, p. 347]:

“A model of a target phenomenon explains that
phenomenon to the extent that (a) the variables in
the model correspond to identifiable components,
activities, and organizational features of the target
mechanism that produces, maintains, or underlies
the phenomenon, and (b) the (perhaps mathemat-
ical) variables in the model correspond to causal
relations among the components of the target mech-
anism.”

Kaplan takes this 3M constraint to provide a demar-
cation line between explanatory and nonexplanatory
models. He further notes that [4.19, p. 347]

“3M aligns with the highly plausible assumption
that the more accurate and detailed the model is for
a target system or phenomenon the better it explains
that phenomenon.”

Models that do not comply with 3M are rejected as
nonexplanatory, being at best phenomenological mod-
els, useful for prediction, but giving no explanatory
insight. In requiring that, explanatory models describe
the real components and activities in the mechanism

that are in fact responsible for producing the phe-
nomenon ([4.17, p. 361], [4.19, p. 353]). Craver and
Kaplan rule out the possibility that fictional, metaphor-
ical, or strongly idealized models can be explanatory.

One of the most comprehensive defenses of the ex-
planatory power of models is given by Bokulich [4.18,
20–22], who argues that model explanations such as
the three discussed previously (McMullin, Cartwright–
Elgin–Sober, and Craver–Kaplan), can be seen as spe-
cial cases of a more general account of the explana-
tory power of models. Bokulich’s approach draws on
Woodward’s counterfactual account of explanation, in
which [4.23, p. 11]

“the explanation must enable us to see what sort of
difference it would have made for the explanandum
if the factors cited in the explanans had been differ-
ent in various possible ways.”

She argues that model explanations typically share
the following three features: first, the explanans makes
essential reference to a scientific model, which, as is the
case with all models, will be an idealized, abstracted, or
fictionalized representation of the target system. Sec-
ond, the model explains the explanandum by showing
how the elements of the model correctly capture the pat-
terns of counterfactual dependence in the target system,
enabling one to answer a wide range of what Wood-
ward calls what-if-things-had-been-different questions.
Finally, there must be what Bokulich calls a justifi-
catory step, specifying the domain of applicability of
the model and showing where and to what extent the
model can be trusted as an adequate representation of
the target for the purpose(s) in question [4.18, p. 39];
see also [4.22, p. 730]. She notes that this justifica-
tory step can proceed bottom-up through something
like a de-idealization analysis (as McMullin, Elgin, and
Sober describe), top-down through an overarching the-
ory (such as in the semiclassical mechanics examples
Bokulich [4.20, 21] discusses), or through some combi-
nation.

Arguably one of the advantages of Bokulich’s ap-
proach is that it is not tied to one particular conception
of scientific explanation, such as the DN or mechanis-
tic accounts. By relaxing Woodward’s manipulationist
construal of the counterfactual condition, Bokulich’s
approach can even be extended to highly abstract, struc-
tural, or mathematical model explanations. She argues
that the various subspecies of model explanation can
be distinguished by noting what she calls the origin or
ground of the counterfactual dependence. She explains,
it could be either [4.18, p. 40]

“the elements represented in the model causally
producing the explanandum (in the case of causal
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model explanations), the elements of the model
being the mechanistic parts which make up the
explanandum-system whole (in the case of mech-
anistic model explanations), or the explanandum
being a consequence of the laws cited in the model
(in the case of covering law model explanations).”

She goes on to identify a fourth type of model ex-
planation, which she calls structural model explanation,
in which the counterfactual dependence is grounded
in the typically mathematical structure of the theory,
which limits the sorts of objects, properties, states, or
behaviors that are admissible within the framework
of that theory [4.18, p. 40]. Bokulich’s approach can
be thought of as one way to flesh out Morrison’s
suggestive, but unelaborated, remark that “the reason
models are explanatory is that in representing these
systems, they exhibit certain kinds of structural depen-
dencies” [4.24, p. 63].

More recently, Rice [4.25] has drawn on Bokulich’s
account to develop a similar approach to the explana-
tory power of models that likewise uses Woodward’s
counterfactual approach without the manipulation con-
dition. He writes [4.25, p. 20]:

“The requirement that these counterfactuals must
enable one to, in principle, intervene in the system
restricts Woodward’s account to specifically causal
explanations. However, I think it is a mistake to re-
quire that all scientific explanations must be causal.
Indeed, if one looks at many of the explanations
offered by scientific modelers, causes are not men-
tioned.”

Compare this to Bokulich’s statement [4.18, p. 39]:

“I think it is a mistake to construe all scientific ex-
planation as a species of causal explanation, and
more to the point here, it is certainly not the case
that all model explanations should be understood as
causal explanations. Thus while I shall adoptWood-
ward’s account of explanation as the exhibiting of
a pattern of counterfactual dependence, I will not
construe this dependence narrowly in terms of the
possible causal manipulations of the system”

Rice rightly notes that the question of causation
is conceptually distinct from the question of what ex-
plains. He further requires on this approach that model
explanations provide two kinds of counterfactual infor-
mation, namely both what the phenomenon depends on
and what sorts of changes are irrelevant to that phe-
nomenon. Following Batterman [4.9, 15, 26], he notes
that for explanations of phenomena that exhibit a kind
of universality, an important part of the explanation is
understanding that the particular causal details or pro-
cesses are irrelevant – the same phenomenon would
have been reproduced even if the causal details had been
different in certain ways.

As an illustration, Rice discusses the case of opti-
mality modeling in biology. He notes that optimality
models are not only highly idealized, but also can be
understood as a type of equilibrium explanation, where
“most of the explanatory work in these models is done
by synchronic mathematical representations of struc-
tural features of the system” [4.25, p. 8]. He connects
this to the counterfactual account of model explanation
as follows [4.25, p. 17]:

“Optimality models primarily focus on noncausal
counterfactual relations between structural features
and the system’s equilibrium point. Moreover, these
features can sometimes explain the target phe-
nomenon without requiring any additional causal
claims about the relationships represented in the
model.”

These causal details are irrelevant because the struc-
tural features cited in the model are multiply realizable;
indeed, this is what allows optimality models to be used
in explaining a wide variety of features across a diver-
sity of biological systems.

In the approaches to model explanations discussed
here, two controversial issues have arisen that merit
closer scrutiny: first, whether the fictions or false-
hoods in models can themselves do real explanatory
work (i. e., even when they are neither harmless, de-
idealizable, nor eliminable), and second, whether many
model explanations illustrate an important, but often
overlooked, noncausal form of explanation. These is-
sues will be taken up in turn in the next two sections.
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4.2 Explanatory Fictions: Can Falsehoods Explain?

Models contain all sorts of falsehoods, from omissions,
abstractions, and idealizations to outright fictions. One
of the most controversial issues in model explanations
is whether these falsehoods, which are inherent in the
modeling practice, are compatible with the explanatory
aims of science. Reiss in the context of explanatory
models in economics has called this tension the expla-
nation paradox: he writes [4.27, p. 43]:

“Three mutually inconsistent hypotheses concern-
ing models and explanation are widely held: (1)
economic models are false; (2) economic mod-
els are nevertheless explanatory; and (3) only true
accounts explain. Commentators have typically re-
solved the paradox by rejecting either one of these
hypotheses. I will argue that none of the proposed
resolutions work and conclude that therefore the
paradox is genuine and likely to stay.”

(This paradox, and some criticisms to Reiss’s ap-
proach (such as [4.28] are explored in a special issue
of the Journal of Economic Methodology (volume 20,
issue 3).)

The field has largely split into two camps on this
issue: those who think it is only the true parts of mod-
els that do explanatory work and those who think the
falsehoods play an essential role in the model expla-
nation. Those in the former camp rely on things like
de-idealization and harmless analyses to show that the
falsehoods do not get in the way of the true parts of the
model that do the real explanatory work. Those in the
latter camp have the challenging task of showing that
some idealizations are essential and some fictions yield
true insights.

The received view is that the false parts of models
only concern those things that are explanatorily irrele-
vant. Defenders of the received view include Strevens,
who in his book detailing his kairetic account of scien-
tific explanation (Strevens takes the term kairetic from
the ancient Greek word kairos, meaning crucial mo-
ment [4.29, p. 477].)), writes, “No causal account of
explanation – certainly not the kairetic account – al-
lows nonveridical models to explain” [4.29, p. 297]. He
spells out more carefully how such a view is to be rec-
onciled with the widespread use of idealized models to
explain phenomena in nature, by drawing the following
distinction [4.29, p. 318]:

“The content of an idealized model, then, can be
divided into two parts. The first part contains the
difference-makers for the explanatory target. [. . . ]
The second part is all idealization; its overt claims
are false but its role is to point to parts of the actual

world that do not make a difference to the explana-
tory target.”

In other words, it is only the true parts of the model
that do any explanatory work. The false parts are harm-
less, and hence should be able to be de-idealized away
without affecting the explanation.

On the other side, a number of scholars have argued
for the counterintuitive conclusion that sometimes it is
in part because of their falsehoods – not despite them –
that models explain. Batterman [4.9, 15, 26], for exam-
ple, has argued that some idealizations are explanatorily
ineliminable, that is, the idealizations or falsehoods
themselves do real explanatory work. Batterman con-
siders continuum model explanations of phenomena
such shocks (e.g., compressions traveling through a gas
in a tube) and breaking drops (e.g., the shape of water as
it drips from a faucet). In order to explain such phenom-
ena, scientists make the idealization that the gas or fluid
is a continuum (rather than describing it veridically as
a collection of discrete gas or water molecules). These
false continuum assumptions are essential for obtain-
ing the desired explanation. In the breaking drop case,
it turns out that different fluids of different viscosities
dripping from faucets of different widths will all exhibit
the same shape upon breakup. The explanation depends
on a singularity that exists only in the (false) contin-
uum model; such an explanation does not exist on the
de-idealized molecular dynamics approach [4.15, pp.
442–443]). Hence, he concludes [4.15, p. 427],

“continuum idealizations are explanatorily inelim-
inable and [. . . ] a full understanding of certain
physical phenomena cannot be obtained through
completely detailed, nonidealized representations.”

If such analyses are right, then they show that not all
idealizations can be de-idealized, and, moreover, those
falsehoods can play an essential role in the explanation.

Bokulich [4.10, 20–22] has similarly defended the
view that it is not just the true parts of models that can
do explanatory work, arguing that in some cases even
fictions can be explanatory. She writes, “some fictions
can give us genuine insight into the way the world is,
and hence be genuinely explanatory and yield real un-
derstanding” [4.10, p. 94]. She argues that some fictions
are able to do this by capturing in their fictional rep-
resentation real patterns of structural dependencies in
the world. As an example, she discusses semiclassical
models whereby fictional electron orbits are used to ex-
plain peculiar features of quantum spectra. Although,
according to quantum mechanics, electrons do not fol-
low definite trajectories or orbits (i. e., such orbits are
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fictions), physicists recognized that puzzling peaks in
the recurrence spectrum of atoms in strong magnetic
fields have a one-to-one correspondence with particular
closed classical orbits [4.30, pp. 2789–2790] (quoted
in [4.10, p. 99]):

“The resonances [. . . ] form a series of strikingly
simple and regular organization, not previously an-
ticipated or predicted. [. . . ] The regular type reso-
nances can be physically rationalized and explained
by classical periodic orbits of the electron on closed
trajectories starting at and returning to the proton as
origin.”

As she explains, at no point are these physicists
challenging the status of quantum mechanics as the
true, fundamental ontological theory; rather, they are
deploying the fiction with the express recognition that
it is indeed a literally false representation (interestingly
this was one of the Vaihinger’s criteria for a scientific
fiction [4.31, p. 98]). Nonetheless, it is a represen-
tation that is able to yield true physical insight and
understanding by carefully capturing in its fictional rep-
resentation the appropriate patterns of counterfactual
dependence of the target phenomenon.

Bokulich [4.10, 20–22] offers several such exam-
ples of explanatory fictional models from semiclassical
mechanics, where the received explanation of quantum
phenomena appeals to classical structures, such as the
Lyapunov (stability) exponents of classical trajectories,
that have no clear quantum counterpart. Moreover, she
notes that these semiclassical models with their fic-
tional assumption of classical trajectories are valued not
primarily as calculation tools (often they require cal-
culations that are just as complicated), but rather are
valued as models that provide an unparalleled level of
physical insight into the structure of the quantum phe-
nomena. Bokulich is careful to note that not just any
fiction can do this kind of explanatory work; indeed,
most fictions cannot. She shows more specifically how
these semiclassical examples meet the three criteria of
her account of model-based explanation, discussed ear-
lier (e.g., [4.10, p. 106]).

A more pedestrian example of an explanatory fic-
tion, and one that brings out some of the objections to
such claims, is the case of light rays postulated by the
ray (or geometrical) theory of optics. Strictly speaking,
light rays are a fiction. The currently accepted funda-
mental theory of wave optics denies that they exist. Yet,
light rays seem to play a central role in the scientific
explanation of lots of phenomena, such as shadows and
rainbows. The physicists Kleppner and Delos, for ex-
ample, note [4.32, p. 610]:

“When one sees the sharp shadows of buildings in
a city, it seems difficult to insist that light-rays are
merely calculational tools that provide approxima-
tions to the full solution of the wave equation.”

Similarly, Batterman, argues [4.33, pp. 154–155]:

“One cannot explain various features of the rainbow
(in particular, the universal patterns of intensities
and fringe spacings) without ultimately having to
appeal to the structural stability of ray theoretic
structures called caustics – focal properties of fami-
lies of rays.”

Batterman is quite explicit that he does not think
that an explanatory appeal to these ray-theoretic struc-
tures requires reifying the rays; they are indeed fictions.

Some, such as Belot, want to dismiss ray-optics
models as nothing but a mathematical device devoid of
any physical content outside of the fundamental (wave)
theory. He writes [4.34, p. 151]:

“The mathematics of the less fundamental theory is
definable in terms of that of the more fundamental
theory; so the requisite mathematical results can be
proved by someone whose repertoire of interpreted
physical theories included only the latter.”

The point is roughly this: it looks like in Batter-
man’s examples that one is making an explanatory ap-
peal to fictional entities from a less fundamental theory
that has been superseded (e.g., ray optics or classical
mechanics). However, all one needs from that super-
seded theory is the mathematics – one does not need to
give those bits of mathematics a physical interpretation
in terms of the fictional entities or structures. Moreover,
that mathematics appears to be definable in terms of
the mathematics of the true fundamental theory. Hence,
those fictional entities are not, in fact, playing an ex-
planatory role.

Batterman has responded to these objections, ar-
guing that in order to have an explanation, one does,
in fact, need the fictional physical interpretation of
that mathematics, and hence the explanatory resources
of the nonfundamental theory. He explains [4.33, p.
159]:

“Without the physical interpretation to begin with,
we would not know what boundary conditions to
join to the differential equation. Neither, would we
know how to join those boundary conditions to the
equation. Put another way, we must examine the
physical details of the boundaries (the shape, reflec-
tive and refractive details of the drops, etc.) in order
to set up the boundary conditions required for the
mathematical solution to the equation.”
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In other words, without appealing to the fictional
rays, we would not have the relevant information we
need to appropriately set up and solve the mathematical
model that is needed for the explanation.

In a paper with Jansson, Belot has raised similar
objections against Bokulich’s arguments that classical
structures can play a role in explaining quantum phe-
nomena. They write [4.35, p. 82]:

“Bokulich and others see explanations that draw on
semiclassical considerations as involving elements
of classical physics as well as of quantum physics.
[. . . ] But there is an alternative way of thinking of
semiclassical mechanics: [. . . ] starting with the for-
malism of quantummechanics one proves theorems
about approximate solutions – theorems that hap-
pen to involve some of the mathematical apparatus
of classical mechanics. But this need not tempt us to
think that there is [classical] physics in our explana-
tions.”

Once again, we see the objection that it is just the
bare mathematics, not the mathematics with its phys-
ical interpretation that is involved in the explanation.
On Bokulich’s view, however, it is precisely by con-
necting that mathematical apparatus to its physical
interpretation in terms of classical mechanics, that one
gains a deeper physical insight into the system one is
studying. On her view, explanation is importantly about
advancing understanding, and for this the physical in-
terpretation is important. (Potochnik [4.5, Chap. 5] has
also argued for a tight connection between explanation
and understanding, responding to some of the tradi-
tional objections against this association. More broadly,
she emphasizes the communicative function of expla-
nation over the ontological approach to explanation,
which makes more room for nonveridical model ex-
planations than the traditional approach.) Even though
classical mechanics is not the true fundamental theory,
there are important respects in which it gets things right,
and hence reasoning with fictional classical structures
within the well-established confines of semiclassical
mechanics, can yield explanatory insight and deepen
our understanding.

As we have seen, these claims that fictions can ex-
plain (in special cases such as ray optics and classical
structures) remain controversial and involve subtle is-
sues. These debates are not entirely new, however, and
they have some interesting historical antecedents, for
example, in the works of Niels Bohr and James Clerk
Maxwell. More specifically, when Bohr is articulating
his widely misunderstood correspondence principle,
(for an accessible discussion see [4.36]) he argues that
one can explain why only certain quantum transitions
between stationary states in atoms are allowed by ap-

pealing to which harmonic components appear in the
Fourier decomposition of the electron’s classical or-
bit (see [4.20, Sect. 4.2] and references therein). He
does this even long after he has conceded to the new
quantum theory that classical electron trajectories in the
atom are impossible (i. e., they are a fiction). Although
Heisenberg used this formulation of the correspondence
principle to construct his matrix mechanics, he argued
that “it must be emphasized that this correspondence
is a purely formal result” [4.37, p. 83], and should not
be thought of as involving any physical content from
the other theory. Bohr, by contrast, was dissatisfied
with this interpretation of the correspondence princi-
ple as pure mathematics, arguing instead that it revealed
a deep physical connection between classical and quan-
tum mechanics. Even earlier, we can see some of these
issues arising in the work of Maxwell, who, in exploit-
ing the utility of fictional models and physical analogies
between disparate fields, argued ([4.38, p. 187]; for
a discussion, see [4.39]):

“My aim has been to present the mathematical ideas
to the mind in an embodied form [. . . ] not as mere
symbols, which convey neither the same ideas, nor
readily adapt themselves to the phenomena to be ex-
plained.”

Three other challenges have been raised against
the explanatory power of fictional models. First, there
is a kind of slippery-slope worry that, once we ad-
mit some fictional models as explanatory, we will not
have any grounds on which to dismiss other fictional
models as nonexplanatory. Bokulich [4.22] introduces
a framework for addressing this problem. Second,
Schindler [4.40] has raised what he sees as a tension
in Bokulich’s account. He claims that on one hand
she says semiclassical explanations of quantum phe-
nomena are autonomous in the sense that they provide
more insight than the quantum mechanical ones. Yet,
on the other hand, she notes that semiclassical mod-
els are justified through semiclassical theory, which
connects these representations as a kind of approxima-
tion to the full quantum mechanics. Hence, they cannot
be autonomous. This objection seems to trade on an
equivocation of the term autonomous: in the first case,
autonomous is used to mean “a representation of the
phenomenon that yields more physical insight” and in
the second case autonomous is used to mean “cannot be
mathematical justified through various approximation
methods”. These seem to be two entirely different con-
cepts, and, hence, not really in tension with each other.
Moreover, Bokulich never uses the term autonomous to
describe either, so this seems to be a misleading reading
of her view.

lmagnani@unipv.it



Models and Explanation 4.2 Explanatory Fictions: Can Falsehoods Explain? 111
Part

A
|4.2

Schindler also rehearses the objection, raised by
Belot and Jansson [4.35], that by eliminating the
interventionist condition in Woodward’s counterfactual
approach to explanation she loses what he calls “the
asymmetry-individuating function”, by which he
means her account seems susceptible to the traditional
problem of asymmetry that plagued the DN account
of explanation (e.g., that falling barometers could be
used to explain impending storms or shadows could
used to explain the height of flag poles, to recall
Sylvain Bromberger’s well-known examples). This
problem was taken to be solved by the causal approach
to explanation, whereby one secures the explanatory
asymmetry simply by appealing to the asymmetry of
causation. It is important to note, however, that this is
not an objection specifically to Bokulich’s account of
structural model explanation, but rather is a challenge
for any noncausal account of explanation (Bokulich
outlines a solution to the problem of asymmetry for her
account in [4.22]). Since many examples of explanatory
models purport to be noncausal explanations, we will
examine this topic more fully in the next section.

Another context in which this issue about the ex-
planatory power of fictional models arises is in con-
nection with cognitive models in psychology and cog-
nitive neuroscience. Weiskopf, for example, discusses
how psychological capacities are often understood in
terms of cognitive models that functionally abstract
from the underlying real system. More specifically, he
notes [4.41, p. 328]:

“In attempting to understand the high level dynam-
ics of complex systems like brains, modelers have
recourse to many techniques for constructing such
indirect accounts [. . . ] reification, functional ab-
straction, and fictionalization.”

By reification, he means “positing something with
the characteristics of a more or less stable and endur-
ing object, where in fact no such thing exists” [4.41, p.
328]. He gives as an example the positing of symbolic
representations in classical computational systems, even
though he notes that nothing in the brain seems to stand
still or be manipulable in the way symbols do. Func-
tional abstraction, he argues occurs when we [4.41, p.
329]

“decompose a modeled system into subsystems and
other components on the basis of what they do,
rather than their correspondence with organizations
and groupings in the target system.”

He notes that this occurs when there are cross-
cutting functional groupings that do not map onto the
structural or anatomical divisions of the brain. He notes
that this strategy emphasizes networks, not locations in

relating cognition to neural structures. Finally, there is
also fictionalization, which, as he describes [4.41, p.
331],

“involves putting components into a model that are
known not to correspond to any element of the mod-
eled system, but which serve an essential role in
getting the models to operate correctly.”

He gives as an example of a fiction in cognitive
modeling what are called fast enabling links (FELs),
which are independent of the channels by which cells
actually communicate and are assumed to have func-
tionally infinite propagation speeds, allowing two cells
to fire in synchrony [4.41, p. 331]. Despite being false
in these ways, some modelers take these fictions to be
essential to the operation of the model and not likely to
be eliminated in future versions.

Weiskopf concludes that models involving reifica-
tions, functional abstractions, and fictions, can nonethe-
less in some cases succeed in “meeting the general
normative constraints on explanatory models perfectly
well” [4.41, p. 332], and hence such models can be
counted as genuinely explanatory. Although Weiskopf
recognizes the many great successes of mechanistic ex-
planations in biological and neural systems, he wants to
resist an imperialism that attempts to reduce all cases of
model explanations in these fields to mechanistic model
explanations.

More recently, Buckner [4.42] has criticized
Weiskopf’s arguments that functionalist models involv-
ing fictions, abstractions, and reification can be ex-
planatory and defended the mechanist’s maxim (e.g., as
articulated by Craver and Kaplan) that only mechanis-
tic models can genuinely explain. Buckner employs two
strategies in arguing against Weiskopf: first, in cases
where the models do explain, he argues that they are
really just mechanism sketches, and where they cannot
be reconstructed mechanistically, he dismisses them as
impoverished explanations. He writes [4.42, p. 3]:

“Concerning fictionalization and reification, I con-
cede that models featuring such components cannot
be interpreted as mechanism sketches, but argue that
interpreting their nonlocalizable components as nat-
ural kinds comes with clear costs in terms of those
models’ counterfactual power. [. . . ] Functional ab-
straction, on the other hand, can be considered a le-
gitimate source of kinds, but only on the condition
that the functionally abstract models be interpreted
as sketches that could be elaborated into a more
complete mechanistic model.”

An essential feature of mechanistic models seems
to be that their components are localizable. Weiskopf
argues, however, that his functional kinds are multi-
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ply realizable, that is, they apply to many different
kinds of underlying mechanisms, and that in some
cases, they are distributed in the sense that they as-
cribe to a given model component capacities that are
distributed amongst distinct parts of the physical sys-
tem. Hence, without localization, such models cannot
be reconstructed as mechanistic models.

What of Buckner’s claim that fictional models will
be impoverished with regard to their counterfactual
power? Consider again Weiskopf’s example of the fic-
tional FELs, which are posited in the model to allow
the cells to achieve synchrony. Buckner argues expla-
nations involving models with FELs are impoverished
in that if one had a true account of synchrony, that
model explanation would support more counterfactual
knowledge. It is not clear, however, that this objection
undermines the explanatory power of models involv-
ing FELs per se; rather it seems only to suggest that
if we knew more and had the true account of syn-

chrony we might have a deeper explanation (at least
on the assumption that this true account of synchrony
would allow us to answer a wider range of what-if-
things-had-been-different questions) (For an account
of explanatory depth, see [4.43]). However, the ex-
planation involving the fiction might still be perfectly
adequate for the purpose for which it is being deployed,
and hence it need not even be counted as impoverished.
For example, there might be some explananda (ones
other than the explanadum of how do cells achieve syn-
chrony) for which it simply does not matter how cells
achieve synchrony; the fact that they do achieve syn-
chrony might be all that is required for some purposes.

Weiskopf is not alone in trying to make room for
nonmechanistic model explanations; Irvine [4.44] and
Ross [4.45] have also recently defended nonmechanis-
tic model explanations in cognitive science and biology.
Their approaches argue for noncausal forms of model
explanation, which we will turn to next.

4.3 Explanatory Models and Noncausal Explanations

Recently, there has been a growing interest in noncausal
forms of explanation. Similar to Bokulich’s [4.20, 21]
approach, many of these seek to understand noncausal
explanations within the context of Woodward’s [4.23]
counterfactual approach to explanation without the in-
terventionist criterion that restricts his account specifi-
cally to causal explanation [4.25, 46]. Noncausal expla-
nations are usually defined negatively as explaining by
some means other than citing causes, though this is pre-
sumably a heterogeneous group. We have already seen
one type of noncausal model-based explanation: [4.20,
21] structural model explanations in physics. More re-
cently, examples have been given in fields ranging
from biology to cognitive science. Highly mathemati-
cal model explanations are another type of noncausal
explanation, though not all mathematical models are
noncausal. A few recent examples are considered here.

In the context of biology and cognitive science,
Irvine [4.44] has argued for the need to go beyond the
causal-mechanical account of model explanation and
defends what she calls a noncausal structural form of
model explanation. She focuses specifically on rein-
forcement learning (RL) models in cognitive science
and optimality models in biology. She notes that al-
though RL and optimality models can be construed as
providing causal explanations in some contexts, there
are other contexts in which causal explanations miss the
mark. She writes [4.44, p. 11]:

“In the account developed here, it is not the pres-
ence of idealisation or abstraction in models that

is important, nor the lack of description of causal
dynamics or use of robustness analyses to test the
models. Instead, it is the bare fact that some mod-
els and target systems have equilibrium points [that]
are highly O-robust with respect to initial conditions
and perturbations. [. . . ] This alone can drive a claim
about noncausal structural explanations.”

By O-robustness, Irvine means a robust conver-
gence to an optimal state across a range of interven-
tions, whether it be an optimization of fitness or an
optimization of decision-making strategies. Her argu-
ment is that since interventions (in the sense of Wood-
ward) do not make a difference to the convergence on
the optimal state, that convergence cannot be explained
causally, and is instead due to structural features of the
model and target system it explains.

Another recent approach to noncausal model expla-
nation is Batterman and Rice’s [4.47] minimal model
explanations. Minimal models are models that explain
patterns of macroscopic behavior for systems that are
heterogeneous at smaller scales. Batterman and Rice
discuss two examples of minimal models in depth: the
Lattice Gas Automaton model, which is used to explain
large-scale patterns in fluid flow, and Fisher’s Sex Ratio
model, which is used to explain why one typically finds
a 1 W 1 ratio of males to females, across diverse popula-
tions of species. In both cases, they argue [4.47, p. 373]:

“these minimal models are explanatory because
there is a detailed story about why the myriad de-
tails that distinguish a class of systems are irrelevant
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to their large-scale behavior. This story demon-
strates, rather than assumes, a kind of stability or
robustness of the large-scale behavior we want to
explain under drastic changes in the various details
of the system.”

They make two further claims about these minimal
model explanations. First, they argue that these expla-
nations are “distinct from various causal, mechanical,
difference making, and so on, strategies prominent in
the philosophical literature” [4.47, p. 349]. Second, they
argue that the explanatory power of minimal models
cannot be accounted for by any kind of mirroring or
mapping between the model and target system (what
they call the common features account). Instead, these
noncausal explanations work by showing that the min-
imal model and diverse real-world systems fall into the
same universality class. This latter claim has been chal-
lenged by Lange [4.48] who, though sympathetic to
their claim that minimal models are a noncausal form of
model explanation, argues that their explanatory power
does in fact derive from the model sharing features in
common with the diverse systems it describes (i. e., the
common features account Batterman and Rice reject).

Ross [4.45] has applied the minimal models account
to dynamical model explanations in the neurosciences.
More specifically, she considers as an explanandum
phenomenon the fact that a diverse set of neural sys-
tems (e.g., rat hippocampal neurons, crustacean motor
neurons, and human cortical neurons Ross [4.45, p.
48]), which are quite different at the molecular level,
nonetheless all exhibit the same type I excitability be-
havior. She shows that the explanation for this involves
applying mathematical abstraction techniques to the
various detailed models of each particular type of neural
system and then showing that all these diverse systems
converge on one and the same canonical model (known
as the Ermentrout–Kopell model). After defending the
explanatory power of these canonical models, Ross then
contrasts this kind of noncausal model explanation with
the causal–mechanical model approach [4.45, p. 46]:

“The canonical model approach contrasts with Ka-
plan and Craver’s claims because it is used to
explain the shared behavior of neural systems with-
out revealing their underlying causal–mechanical
structure. As the neural systems that share this be-
havior consist of differing causal mechanisms [. . . ]
a mechanistic model that represented the causal
structure of any single neural system would no
longer represent the entire class of systems.”

Her point is that a noncausal explanation is called
for in this case because the particular causal details are

irrelevant to the explanation of the universal behavior of
class I neurons. The minimal models approach, as we
saw above, is designed precisely to capture these sort
explanations involving universality.

More generally, many highly abstract or highly
mathematical model explanations also seem to fall into
this general category of noncausal model explanations.
Pincock, for example, identifies a type of explanation
that he calls abstract explanation, which could be ex-
tended to model-based explanations. He writes “the best
recent work on causal explanation is not able to natu-
rally accommodate these abstract explanations” [4.49,
p. 11]. Although some of the explanations Pincock
cites, such as the topological (graph theory) explana-
tion for why one cannot cross the seven bridges of
Königsberg exactly once in a nonbacktracking circuit,
seem to be genuinely noncausal explanations, it is not
clear that all abstract explanations are necessarily non-
causal. Reutlinger and Andersen [4.50] have recently
raised this objection against Pincock’s account, arguing
that an explanation’s being abstract is not a sufficient
condition for it being noncausal. They argue that many
causal explanations can be abstract too and so more
work needs to be done identifying what makes an ex-
planation truly noncausal. This is a particularly pressing
issue in model-based explanations, since many scien-
tific models are abstract in this sense of leaving out
microphysical or concrete causal details about the ex-
planandum phenomenon.

Lange [4.51] has also identified a kind of noncausal
explanation that he calls a distinctively mathematical
explanation. Lange considers a number of candidate
mathematical explanations, such as why one cannot
divide 23 strawberries evenly among three children,
why cicadas have life-cycle periods that are prime, and
why honeybees build their combs on a hexagonal grid.
Lange notes that whether these are to count as distinc-
tively mathematical explanations depends on precisely
how one construes the explanandum phenomenon. If
we ask why honeybees divide the honeycomb into
hexagons, rather than other polygons, and we cite
that it is selectively advantageous for them to min-
imize the wax used, together with the mathematical
fact that a hexagonal grid has the least total perime-
ter, then it is an ordinary causal explanation (it works
by citing selection pressures). If, however [4.50, p.
500]:

“we narrow the explanandum to the fact that in any
scheme to divide their combs into regions of equal
area, honeybees would use at least the amount of
wax they would use in dividing their combs into
hexagons. [. . . ] this fact has a distinctively mathe-
matical explanation.”
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As Lange explains more generally [4.51, p. 485]:

“These explanations are noncausal, but this does
not mean that they fail to cite the explanandum’s
causes, that they abstract away from detailed causal
histories, or that they cite no natural laws. Rather,
in these explanations, the facts doing the explaining
are modally stronger than ordinary causal laws. ”

The key issue is not whether the explanans cite
the explanandum’s causes, but whether the explana-

tion works by virtue of citing those causes. Dis-
tinctively mathematical (noncausal) explanations show
the explanandum to be necessary to a stronger de-
gree than would result from the causal powers
alone.

As this literature makes clear, distinguishing causal
from noncausal explanations is a subtle and open prob-
lem, but one crucial for understanding the wide-spread
use of abstract mathematical models in many scientific
explanations.

4.4 How-Possibly versus How-Actually Model Explanations

Models and computer simulations can often generate
patterns or behaviors that are strikingly similar to the
phenomenon to be explained. As we have seen, how-
ever, that is typically not enough to conclude that the
model thereby explains the phenomenon. An important
distinction here is that between a how-possibly model
explanation and a how-actuallymodel explanation.

The notion of a how-possibly explanation was first
introduced in the 1950s by Dray in the context of ex-
planations in history. Dray conceived of how-possibly
explanations as a rival to the DN approach, which he
labeled why-necessarily explanations [4.52, p. 161].
Dray interpreted how-possibly explanations as ones
that merely aim to show why a particular phenomenon
or event “need not have caused surprise” [4.52, p. 157];
hence, they are answers to a different kind of question
and can be considered complete explanations in them-
selves. Although Dray’s approach was influential, sub-
sequent authors have interpreted this distinction in dif-
ferent ways. Brandon, in the context of explanations in
evolutionary biology, for example, writes [4.53, p. 184]:

“A how-possibly explanation is one where one or
more of the explanatory conditions are speculatively
postulated. But if we gather more and more evi-
dence for the postulated conditions, we can move
the how-possibly explanation along the continuum
until finally we count it as a how-actually explana-
tion. ”

On this view, the distinction is a matter of the degree
of confirmation, not a difference of kind: as we get more
evidence that the processes cited in the model are the
processes operating in nature, we move from a how-
possibly to how-actually explanation.

Forber [4.54], however, rejects this interpretation of
the distinction as marking a degree of empirical sup-
port, and instead defends Dray’s original contention that
they mark different kinds of explanations. More specif-
ically, Forber distinguishes two kinds of how-possibly

explanations that he labels global how-possibly and lo-
cal how possibly explanations [4.54, p. 35]:

“The global how-possibly explanations have theory,
mathematics, simulations, and analytical techniques
as the resources for fashioning such explanations.
[. . . ] The local how-possibly explanations draw
upon the models of evolutionary processes and go
one step further. They speculate about the biological
possibilities relative to an information set enriched
by the specific biology of a target system. [. . . ]
How-actually explanations, carefully confirmed by
empirical tests, aim to identify the correct evolu-
tionary processes that did, in fact, produce the target
outcome.”

Although Forber’s distinction is conceptually help-
ful, it is not clear whether global versus local how-
possibly explanations should, in fact, be seen as two
distinct categories, rather than simply two poles of
a spectrum.

Craver draws a distinction between how-possibly
models and how-actually models that is supposed to
track the corresponding two kinds of explanations.
He notes that how-possibly models purport to explain
(unlike phenomenological models, which do not pur-
port to explain), but they are only loosely constrained
conjectures about the mechanism. How-actually mod-
els, by contrast, describe the detailed components and
activities that, in fact, produce the phenomenon. He
writes [4.17, p. 361]:

“How-possibly models are [. . . ] not adequate expla-
nations. In saying this I am saying not merely that
the descriptionmust be true (or true enough) but fur-
ther, that the model must correctly characterize the
details of the mechanism.”

Craver seems to see the distinction resting not just
on the degree of confirmation (truth) but also on the de-
gree of detail.
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Bokulich [4.55] defends another construal of the
how-possibly/how-actually distinction and applies it to
model-based explanations more specifically. She con-
siders, as an example, model-based explanations of
a puzzling ecological phenomenon known as tiger bush.
Tiger bush is a striking periodic banding of vegetation in
semi-arid regions, such as southwestNiger. A surprising
feature of tiger bush is that it can occur for a wide vari-
ety of plants and soils, and it is not induced by any local
heterogeneities or variations in topography. By tracing
how scientists use various idealizedmodels (e.g., Turing
models or differential flow models) to explain phenom-
ena such as this, Bokulich argues a new insight into the
how-possibly/how-actually distinction can be gained.

The first lesson she draws is that there are different
levels of abstraction at which the explanandum phe-
nomenon can be framed, which correspond to different
explanatory contexts [4.55, p. 33]. These different ex-
planatory contexts can be clarified by considering the
relevant contrast class of explanations (for a discussion
of contrast classes and their importance in scientific ex-
planation, see [4.56, Chap. 5]). Second, she argues pace
Craver that the how-possibly/how-actually distinction

does not track how detailed the explanation is. She ex-
plains [4.55, p. 334]:

“It is not the amount of detail that is relevant, but
rather whether the mechanism represented in the
model is the mechanism operating in nature. Indeed
as we saw in the tiger bush case, the more abstractly
the explanatory mechanism is specified, the easier
it is to establish it as a how-actually explanation;
whereas the more finely the explanatory mechanism
is specified, the less confident scientists typically
are that their particular detailed characterization of
the mechanism is the actual one.”

Hence, somewhat counterintuitively, model expla-
nations at a more fine-grained level are more likely to
be how-possibly model explanations, even when they
are nested within a higher level how-actually model
explanation of a more abstract characterization of the
phenomenon. She concludes that when assessing model
explanations, it is important to pay attention to what
might be called the scale of resolution at which the ex-
planandum phenomenon is being framed in a particular
explanatory context.

4.5 Tradeoffs in Modeling:
Explanation versus Other Functions for Models

Different scientists will often create different models of
a given phenomenon, depending on their particular in-
terests and aims. Following Giere, we might note that
“there is no best scientific model of anything; there
are only models more or less good for different pur-
poses” [4.57, p. 1060]. If this is right, then it raises the
following questions: What are the features that make
a model particularly good for the purpose of explana-
tion? Are there tradeoffs between different modeling
aims, such that if one optimizes a model for expla-
nation, for example, then that model will fail to be
optimized for some other purpose, such as prediction?

One of the earliest papers to explore this theme
of tradeoffs in modeling is Levins’ paper The Strat-
egy of Model Building in Population Biology. Levins
writes [4.58, p. 422]:

“It is of course desirable to work with manageable
models which maximize generality, realism, and
precision toward the overlapping but not identical
goals of understanding, predicting, and modifying
nature. But this cannot be done.”

Levins then goes on to describe various modeling
strategies that have evolved among modelers, such as
sacrificing realism to generality and precision, or sac-

rificing precision to realism and generality. Levins in
his own work on models in ecology favored this lat-
ter strategy, where he notes his concern was primarily
qualitative not quantitative results, and he emphasizes
the importance of robustness analyses in assessing these
models.

Although Levins’s arguments have not gone un-
challenged, Matthewson and Weisberg have recently
defended the view that some tradeoffs in modeling are
genuine. They focus on precision and generality, given
the relevance of this tradeoff to the aim of explana-
tory power. After a technical demonstration of different
kinds of tradeoffs between two different notions of gen-
erality and precision, they conclude [4.59, p. 189]:

“These accounts all suggest that increases in gener-
ality are, ceteris paribus, associated with an increase
in explanatory power. The existence of tradeoffs be-
tween precision and generality indicates that one
way to increase an explanatorily valuable desidera-
tum is by sacrificing precision. Conversely, increas-
ing precision may lead to a decrease in explanatory
power via its effect on generality.”

Mapping out various tensions and tradeoffs mod-
elers may face in developing models for vari-
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ous aims, such as scientific explanation, remains
a methodologically important, though underexplored
topic.

More recently, Bokulich [4.60] has explored such
tradeoffs in the context of modeling in geomorphology,
which is the study of how landscapes and coastlines
change over time. Even when it comes to a single phe-
nomenon, such as braided rivers (i. e., rivers in which
there is a number of interwoven channels and bars that
dynamically shift over time), one finds that scientists
use different kinds of models depending on whether
their primary aim is explanation or prediction. When
they are interested explaining why rivers braid geo-
morphologists tend to use what are known as reduced
complexity models, which are typically very simple
cellular automata models with a highly idealized repre-
sentation of the fluvial dynamics [4.61]. The goal is to
try to abstract away and isolate the key mechanisms re-
sponsible for the production of the braided pattern. This
approach is contrasted with an alternative approach
to modeling in geomorphology known as reductionist
modeling. Here one tries to simulate the braided river
in as much accurate detail and with as many differ-
ent processes included as is computationally feasible,
and then tries to solve the relevant Navier–Stokes equa-
tions in three dimensions. These reductionist models
are the best available tools for predicting the features
of braided rivers [4.61, p. 159], but they are so complex
that they yield very little insight into why the patterns
emerge as they do.

Bokulich uses cases such as these to argue for what
she calls a division of cognitive labor among mod-
els [4.60, p. 121]:

“If one’s goal is explanation, then reduced complex-
ity models will be more likely to yield explanatory
insight than simulation models; whereas if one’s
goal is quantitative predictions for concrete sys-
tems, then simulation models are more likely to be
successful. I shall refer to this as the division of cog-
nitive labor among models.”

As Bokulich notes, however, one consequence of
this division of cognitive labor is that a model that
was designed to optimize explanatory insight might fail
to make quantitatively accurate predictions (a different
cognitive goal). She continues [4.60, p. 121]:

“This failure in predictive accuracy need not mean
that the basic mechanism hypothesized in the ex-
planatory model is incorrect. Nonetheless, explana-
tory models need to be tested to determine whether
the explanatorymechanism represented in themodel
is in fact the real mechanism operating in nature.”

She argues for the importance of robustness analy-
ses in assessing these explanatory models, noting that
while robustness analyses cannot themselves function
as a nonempirical mode of confirmation, they can be
used to identify those qualitative predictions or trends
in the model that can appropriately be compared with
observations.

4.6 Conclusion

There is a growing realization that the use of idealized
models to explain phenomena is pervasive across the
sciences. The appreciation of this fact has led philoso-
phers of science to begin to introduce model-based
accounts of explanation in order to bring the philo-
sophical literature on scientific explanation into closer
agreement with actual scientific practice.

A key question here has been whether the idealiza-
tions and falsehoods inherent in modeling are harmless
in the sense of doing no real explanatory work, or
whether they have an essential – maybe even inelim-
inable – role to play in some scientific explanations.
Are such fictions compatible with the explanatory aims
of science, and if so, under what circumstances? While
some inroads have been made on this question, it re-
mains an ongoing area of research. As we saw, yet
another controversial issue concerns the fact that many
highly abstract and mathematical models seem to ex-
emplify a noncausal form of explanation, contrary to
the current orthodoxy in scientific explanation. Deter-

mining what is or is not to count as a causal explanation
turns out to be a subtle issue.

Finally, just because a model or computer sim-
ulation can reproduce a pattern or behavior that is
strikingly like the phenomenon to be explained, does
not mean that it thereby explains that phenomenon.
An important distinction here is that between a how-
possibly model explanation and a how-actually model
explanation. Despite the wide agreement that such
a distinction is important, there has been less agree-
ment concerning how precisely these lines should be
drawn.

Although significant progress has been made in
recent years in understanding the role of models in sci-
entific explanation, there remains muchwork to be done
in further clarifying many of these issues. However, as
the articles reviewed here reveal, exploring just how and
when models can explain is a rich and fruitful area of
philosophical investigation and one essential for under-
standing the nature of scientific practice.
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5. Models and Simulations

Nancy J. Nersessian, Miles MacLeod

In this chapter we present some of the cen-
tral philosophical issues emerging from the
increasingly expansive and sophisticated roles
computational modeling is playing in the natural
and social sciences. Many of these issues concern
the adequacy of more traditional philosophical
descriptions of scientific practice and accounts of
justification for handling computational science,
particularly the role of theory in the generation
and justification of physical models. However, cer-
tain novel issues are also becoming increasingly
prominent as a result of the spread of compu-
tational approaches, such as nontheory-driven
simulations, computational methods of infer-
ence, and the important, but often ignored, role
of cognitive processes in computational model
building.

Most of the philosophical literature on models
and simulations focuses on computational simu-
lation, and this is the focus of our review. However,
we wish to note that the chief distinguishing
characteristic between a model and a simula-
tion (model) is that the latter is dynamic. They can
be run either as constructed or under a range of
experimental conditions. Thus, the broad class of
simulation models should be understood as com-

5.1 Theory-Based Simulation ................... 119

5.2 Simulation not Driven by Theory ......... 121

5.3 What is Philosophically Novel
About Simulation?. ............................. 124

5.4 Computational Simulation
and Human Cognition ........................ 127

References ................................................... 130

prising dynamic physical models andmental mod-
els, topics considered elsewhere in this volume.

This chapter is organized as follows. First in
Sect. 5.1 we discuss simulation in the context
of well-developed theory (usually physics-based
simulations). Then in Sect. 5.2 we discuss simula-
tion in contexts where there are no over-arching
theories of the phenomena, notably agent-based
simulations and those in systems biology. We then
turn to issues of whether and how simulation
modeling introduces novel concerns for the phi-
losophy of science in Sect. 5.3. Finally, we conclude
in Sect. 5.4 by addressing the question of the rela-
tion between human cognition and computational
simulation, including the relationship between
the latter and thought experimenting.

5.1 Theory-Based Simulation

A salient aspect of computational simulation, and the
one which has attracted the most substantial philo-
sophical interest so far, is its ability to extend the
power and reach of theories in modern science beyond
what could be achieved by pencil and paper alone.
Work on simulations has concentrated on simulations
built from established background theories or theoreti-
cal models and the relations between these simulations
and theory. Examples have been sourced mainly from
the physical sciences, including simulations in astro-
physics, fluid dynamics, nanophysics, climate science
and meteorology.Winsberg has been foremost in study-

ing theory-driven forms of simulation and promoting
the importance of philosophical investigation of it by
arguing that such simulations set a new agenda for
philosophy of science [5.1–5]. He uses the case of simu-
lation to challenge the longstanding focus of philosophy
of science on theories, particularly on how they are jus-
tified [5.1, 3, 5]. Simulations, he argues, cannot simply
be understood as novel ways to test theories. They are
in fact rarely used to help justify theories, rather simula-
tions apply existing theories in order to explore, explain
and understand real and possible phenomena, or make
predictions about how such phenomena will evolve in
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time. Simulations open up a whole new set of philo-
sophical issues concerning the practices and reliability
of much modern science.

Winsberg’s analysis of theory-based simulation
shares much with Cartwright’s [5.6] and Morgan and
Morrison’s [5.7] challenges to the role of theories. Like
them, he starts by strongly disputing the presupposition
that simulations are somehow deductive derivations
from theory. Simulations are applied principally in
the physical sciences when the equations generated
from a theory to represent a particular phenomenon
are not analytically solvable. The path from a theory
to a simulation requires processes of computerization,
which transform equations into tractable computable
structures by relying on practices of discretization
and idealization [5.8]. These practices employ specific
transformations and simplifications in combination
with those used to make tractable the application of
theoretical equations to a specific phenomenon such
as boundary conditions and symmetry assumptions.
As such simulations are, according to Winsberg [5.1],
better construed as particular articulations of a theory
rather than derivations from theory. They make use of
theoretical information and the credibility, explanatory
scope and depth, of well-established theories, to pro-
vide warrant to simulations of particular phenomena.
Inferences drawn by computational simulations have
several features in this regard; they are downward,
motley and autonomous [5.9]. Inferences are downward
because they move from theory to the real world (rather
than from the real world to theory). They are motley
because they depend not just on theory but on a large
range of extra-theoretical techniques and resources
in order to derive inferences, such as approximation
and simplification techniques, numerical methods,
algorithmic methods, computer languages and hard-
ware, and much trial and error. Finally, simulations
are autonomous, in the sense of being autonomous
from both theory and data. Simulations, according to
Winsberg, are principally used to study phenomena
where data is sparse and unavailable. These three con-
ditions on inference from simulation require a specific
philosophical evaluation of their reliability.

Such evaluation is complicated by the fact that re-
lations between theory and inferences drawn from the
simulation model are unclear and difficult to untangle.
As Winsberg [5.1, 9] suggests it is a complex task to
unpack what role theories play in the final result given
all these intervening steps. The fact that much valida-
tion of simulations is done throughmatching simulation
outputs to the data, muddies the water further (see
also [5.10]). A well-matched simulation constructed
through a downward, motley and autonomous process
from a nonetheless well-established theory raises the

question of the extent to which the confirmation af-
forded to the theory flows down to the simulation [5.2].
For instance, although fitting a certain data set might
well be the dominant mode of validation of a simu-
lation model, the model could be considered to hold
outside the range of that data because the model applies
a well-accepted theory of the phenomenon thought to
hold under very general conditions.

There is widespread agreement that untangling the
relations between theories and simulations, and the re-
liability of simulations built from theories will require
more in depth investigation of the actual practices sci-
entists use to justify the steps they make when building
a simulation model. In the absence of such investiga-
tions discussions of justification are limited to consider-
ations about whether a simulation fits the observational
data or not. Among other things, this limitation hides
from view important issues about the warrant of the
various background steps that transform theoretical in-
formation into simulations [5.10]. In general, what is
required is an epistemology of simulationwhich can dis-
cover rigorous grounds upon which scientists can and
do sanction their results, and more properly the role of
theory in modern science.

The concern with practices of simulation has
opened up a new angle on the older discussion about
the structure of theories. Humphreys [5.11] has used
the entanglement of theory and simulation in modern
scientific practice to reflect more explicitly upon the
proper philosophical characterization of the structure
of physical theories. Simulations, as with other mod-
els, are not logical derivations from theory which is
a central, but incorrect, feature of the syntactic view.
Humphreys also argues, however, that the now dom-
inant semantic view of theories, which treats theories
as nonlinguistic entities, is not adequate either. On the
semantic view a syntactical formulation of a theory,
and whether different formulations might be solvable
or not, is not important for philosophical assessment
of relations of representations to the world. Relations
of representation are only in fact sensibly held by
models not theories. Both Humphreys and Winsberg
construe the semantic view as dismissing the role of
theories in both normative and descriptive accounts of
science, in place of models. But as Humphreys [5.12,
p. 620] puts it, “the specific syntactic representation
used is often crucial to the solvability of a theory’s
equations”, and thus, the solvability of models derived
from it. Computational tractability, as well as choices of
approximation and simplification techniques, will de-
pend on the particular syntax of a theory. Hence both
the semantic and syntactic views are inadequate for
describing theory in ways that capture their role in sci-
ence.
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Investigations, such as those by Winsberg and oth-
ers discussed in the previous section, have illustrated
the importance of close attention to scientific practice
and discovery when studying simulations. Simulation
manifests application-intensive, rather than theoretical,
processes of scientific investigation. As Winsberg [5.1]
suggests choices about how to model a phenomenon re-
liably are developed often in the course of the to and
fro blood, sweat and tears of the model-building pro-
cess itself. Abstract armchair points of view, distant
from an understanding of the contingent, but also tech-
nical and technological nature of these practices and
their affordances, will not put philosophers in a posi-
tion to create relevant normative assessments of good
simulation practices. What has thus far been established
by the accounts of theory-based simulation is that even
in the case where there is an established theory of the
phenomena, simulation model-building has a degree of
independence from theory and theory-building.

However, though the initial focus on theory-based
simulation in the study of simulation is not unsurpris-
ing given the historical preference in philosophy of
science for treating theory as the principal unit of philo-
sophical investigation, simulations are not just a tool
of theory-driven science alone. Pushing philosophical
investigation into model-building practices outside the
domain of theory-driven science reveals whole new
practices of scientific model production using compu-
tational simulations that are not in fact theory-based,
in the sense of traditional physical sciences. Some of
the most compelling and innovative fields in science
today, including, for instance, big-data biology, sys-
tems biology and neuroscience, and much modeling
in the social sciences, are not theory-driven. As Wins-
berg [5.5] admits (in response to Parker [5.13]), his
description of simulation modeling is theory-centric,
and neither necessarily applicable to understanding the
processes by which simulation models are built in the
absence of theory, nor an appropriate framework for
assessing the reliability and informativeness of mod-
els built that way. This is not to say that characteristics
of theory-based simulation are irrelevant to simulations
that are not. Both theory and nontheory-based simu-
lations share an independence of theory and there are
likely to be similarities between them, but there are also
profound differences.

One kind of simulation that is important in this re-
gard is agent-based modeling. Keller [5.14] has labeled
much agent-based modeling as modeling from above
in the sense that such models are not constructed us-
ing a mathematical theory that governs the motions of
agents. Agents follow local interactions rules. In many

fields in the social sciences and biology differential
equations cannot be used to aggregate accurately agent
or population behavior, but it is nonetheless possible
to hypothesize or observe the structure of individ-
ual interactions. An agent-based model can be used
to run those interactions over a large population to
test whether the local structures can reproduce aggre-
gate behavior [5.15]. As noted by Grüne-Yanoff and
Weirich [5.16] agent-based modeling facilitates con-
structing remarkably complex models within computa-
tionally tractable constraints that often go well beyond
what is possible with equation-based representations.

Agent-based models provide one exemplar of sim-
ulations that are not theory-driven. From an episte-
mological perspective, these simulations exhibit weak
emergence [5.17]. The underlying mechanisms are
thoroughly opaque to the users, and the way in which
emergent properties come about can simply not be
reassembled by studying the simulation processes.
This opacity raises questions about the purpose and
value of agent-based modeling. What kind of expla-
nation and understanding does an agent-based simu-
lation provide if the multiscale mechanisms produced
in a simulation are cognitively inaccessible? Further,
how is one to evaluate predictions and explanations
from agent-based simulations which, in fields like ecol-
ogy and economics, commonly simplify very com-
plex interactions in order to create computationally
tractable simulations. If a simplistic model captures
a known behavior, can we trust its predictions? To
address questions such as these we need an episte-
mology that can evaluate proposed techniques for es-
tablishing the robustness of agent-based models. One
alternative is to argue that agent-based models re-
quire a novel epistemology that is able to rationalize
their function as types of fictions rather than as rep-
resentations [5.18, 19]. Another alternative, presented
by Grüne-Yanoff and Weirich [5.16], is to argue that
agent-based models provide in many cases functional
rather than causal explanations of the phenomena they
simulate [5.20]. Agent-based model simulations rarely
control for all the potential explanatory factors that
might be relevant to a given phenomenon, and any
choice of particular interaction mechanism is usually
thoroughly underdetermined. In practice, all possible
mechanisms cannot be explored. But agent-based mod-
els can show reliably how particular lower-level ca-
pacities behave in certain ways, when modeled by
suitably general interactions rules, and can constitute
higher-level capacities no matter how multiply real-
ized those interactions might be. Hence, such mod-
els, even though greatly simplified, can extract useful
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information despite a large space of potential ex-
plananda.

Nontheory-driven forms of simulation such as
agent-based models provide a basis for reflecting more
broadly on the role theory plays in the production of
simulations, and the warrant a theory brings to simu-
lations based on it. Comparative studies of the kinds of
arguments used to justify relying on a simulation should
expose the roles well-established theories play. Our in-
vestigations of integrative systems biology (ISB) have
revealed that not all equation-based modeling is theory-
driven, if theory is construed in terms of theory in the
physical sciences. The canonical meaning based on the
physical sciences is something like a background body
of laws and principles of a domain.

In the case of systems biology, researchers gener-
ally do not have access to such theory and in fact the
kinds of theory they do make use of have a function dif-
ferent from what is usually meant by theory in fields
like physics [5.21]. There are certain canonical theories
in systems biology of how to mathematically represent
interactions among, for instance, metabolites, in the
form of sets of ordinary differential equations. These
posit particular canonical mathematical forms for repre-
senting a large variety of interactions (see Biochemical
Systems Theory [5.22]). In principle, for any particular
metabolic network, if all the interactions and reactants
are known, the only work for the modeler is to write
down the equations for a particular network and calcu-
late the parameters. The mathematics will take care of
the rest since the mathematical formulations of inter-
actions are general enough that any potential nonlinear
behaviors should be represented if parameters are cor-
rectly fixed.

For the most part, however, these canonical frame-
works do not provide the basic ontological information
from which a representation of a system is ultimately
drawn, in the way say that the Navier-Stokes equations
of fluid dynamics describe fluids and their component
interactions in a particular way. In practice, modelers
in systems biology need to assemble that information
themselves in the form of pathway diagrams which
more or less list the molecules involved and then make
their own decisions about how to represent molecular
interactions. A canonical framework is better inter-
preted as a theory of how to approximate and simplify
the information that the systems biologist has assem-
bled about a pathway in order to reliably simulate the
dominant dynamics of a network given sparse data and
complex nonlinear dynamics. Hence, there is no real
theory articulation in Winsberg’s terms. Researchers do
not articulate a general theory for a particular applica-
tion. The challenge for systems biologists is to build
a higher level or system level representation out of the

lower level information they possess. We have found
that canonical templates mediate this process by pro-
viding a possible structure for gluing together this lower
level information in a tractable way [5.21]. These theo-
ries do not offer any direct explanatory value by virtue
of their use.

Theory can in fact be used not just to describe
a body of laws and theoretical principles, but also to
describe principles that instruct scientists on how to re-
liably build models of given classes of phenomena from
a background theory. As Peck puts it [5.18, p. 393]:

“In traditional mathematical modeling, there is
a long established research program in which stan-
dard methods, such as those used for differential
equation modeling, are used to bring about certain
ends. Once the variables and parameters and their
relationships are chosen for the representation of the
model, standard formulations are used to complete
the modeling venture.”

If one talks about what physical scientists often
start with it is not just the raw theory itself but well-
established rules for formulating the theory and ap-
plying it with respect to a particular phenomenon. We
might refer to this latter sense of theory as a theory of
how to apply a background theory to reliably represent
a phenomenon. The two senses of theory are exclusive.
In the case of the canonical frameworks, what is meant
by theory is something closer to this latter rather than
former sense.

Additionally, the modelers we have studied are
never in a position to rely on these frameworks un-
critically and in fact no theory exists that specifies
which representations to use that will reliably lead to
a good representation in all data situations. In integra-
tive systems biology the variety of data situations are
very complex, and the data are often sparse and are
rarely adequate for applying a set mathematical frame-
work. This forces researchers in practice into much
more intensive and adaptive model-building processes
that certainly share much in common with the back and
forth processes Winsberg talks about in the context of
theory application. But these processes have the added
and serious difficulty that the starting points for even
composing the mathematical framework out of which
a model should be built are open-ended and need to be
decided based on thorough investigation of the possibil-
ities with the specific data available.

Canonical frameworks are just an option for mod-
elers and do not drive the model-building process in
the way physical theories do. Currently, systems bi-
ology generally lacks effective theory of either kind.
Modelers have many different choices about how to
confront a particular problem that do not necessarily
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involve picking up a canonical framework or sticking
to it. MacLeod and Nersessian [5.21] have documented
how the nontheory-derived model-building processes
work in these contexts. Models are strategic adaptations
to a complex set of constraints system biologists are
working under [5.23]. Among these constraints are:

� Constraints of the biological problem: A model
must address the constraints of the biological prob-
lem, such as how the redox environment is main-
tained in a healthy cell. The system involved is often
of considerable complexity.� Informational/data constraints: There are con-
straints on the accessibility and availability of ex-
perimental data and molecular and system parame-
ters for constructing models.� Cost constraints: ISB is data-intensive and relies
on data that often go beyond what are collected
by molecular biologists in small scale experiments.
However, data are very costly to obtain.� Collaboration constraints: Constraints on the abil-
ity to communicate effectively with experimental
collaborators with different backgrounds or in dif-
ferent fields in order to obtain expert advice or new
data. Molecular biologists largely do not understand
the nature of simulation modeling, do not under-
stand the data needs of modeling, and do not see the
cost-benefit of producing the particular data systems
biologists ask from them.� Time-scale constraints: Different time scales op-
erate with respect to generating molecular experi-
mental data versus computational model testing and
construction.� Infrastructure constraints: There is little in the way
of standardized databases of experimental informa-
tion or standardized modeling software available for
systems biologists to rely upon.� Knowledge constraints: Modelers’ lack knowledge
of biological systems and experimental methods
limits their understanding of what is biologically
plausible and what reliable extrapolations can be
made from the data sets available.� Cognitive constraints: Constraints on the ability to
process and manipulate models because of their
complexity, and thus constraints on the ability to
comprehend biological systems through modeling.

Working with these constraints requires them to be
adaptive problem-solvers. Given the complexity of the
systems, lack of data, and the ever-present problem of
computational tractability, researchers have to exper-
iment with different mathematical formulations, dif-
ferent parameter-fixing algorithms and approximation
techniques in highly intensive trial and error processes.

They build models in nest-like fashion in which bits of
biological information and data and mathematical and
computational techniques, get combined to create stable
models. These processes transform not only the shape
of the solutions, but also the problems, as researchers
figure out what actual problem can be solved with the
data at hand. Simulation plays a central exploratory role
in the process. This point goes further than Lenhard’s
idea of an explorative cooperation between experimen-
tal simulation and models [5.8]. Simulation in systems
biology is not just for experimenting on systems in or-
der to sound out the consequences of a model [5.8,
p. 181], but plays a fundamental role in incrementally
building the model and learning the relevant known and
sometimes unknown features of a system and gaining
an understanding of its dynamics. Simulation’s roles as
a cognitive resource make the construction of represen-
tations of complex systems without a theoretical basis
possible (see also [5.24, 25]).

Similar conclusions have been drawn by Peck for
ecology which shares with systems biology the com-
plexity in its problems and a lack of generalizable
theory. As Peck [5.18, p. 393] points out:

“there are no formal methodological procedures for
building these types of models suggesting that con-
structing an ecological simulation can legitimately
be described as an art.”

This situation promotes methodological pluralism
and creative methodological exploration by modelers.
Modelers in these contexts thus focus our attention on
the deeper roles (sometimes called heuristic roles [5.5])
that simulation plays in the ability of researchers to
explore potential solutions in order to solve complex
problems.

These roles have added epistemological importance
when it is realized that the downward character of sim-
ulation can be fact reversed in both senses we have
mentioned above. This is a potentially significant dif-
ference between cases of theory and nontheory-driven
simulation. Consider again systems biology. Firstly, the
methodological exploration we witness amongst the
researchers we have studied can be rationalized as pre-
cisely an attempt by the field to establish a good theory
of how to build models of biological systems that work
well given a variety of data situations. Since the com-
plexities of these systems and computational constraints
make this difficult to know at the outset, the field needs
its freedom to explore the possibilities. Lab directors do
encourage exploration, and part of the reason they do is
to try to glean which practices work well and which do
not given a lack of knowledge of what will work well
for a given problem.
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Secondly, systems biology aspires to a theory of bi-
ological systems which will detail general system-level
characteristics of biological systems but also the de-
sign principles underlying biological networks [5.26,
27]. What is interesting about this theory, if it does
emerge, is that it will in fact be theory generated by
simulation rather than the other way around. Simula-
tion makes possible the exploration of quite complex
systems for generalities that can form the basis of
a theory of systems biology. As such the use of sim-
ulations can also be upwards, not just downwards, to
perhaps an unprecedented extent. Upward uses of sim-
ulation requires analysis that appears to fit better with

more traditional philosophical analysis of how theories
are in fact justified, only in this case robust simu-
lation models will possibly be the more significant
source of evidence rather than traditional experiment
and observation. How this affects the nature and re-
liability of our inferences to theory, and what kind
of resemblance such theory might have to theory in
physics, is something that will need investigation. Thus,
further exploration of nontheory-driven modeling prac-
tices stand to provide a rich ground for investigation
of novel practices that are emerging with simula-
tion, but also for exploring the roles and meanings of
theory.

5.3 What is Philosophically Novel About Simulation?

The question of whether or not simulation introduces
new issues into the philosophy of science has emerged
as a substantial debate in discussions of computational
simulation. Winsberg [5.1, 3–5] and Humphreys [5.11,
12] are the major proponents of the view that simulation
requires its own epistemology. Winsberg, for instance,
takes the view that simulations exhibit “distinct epis-
temological characteristics . . . novel to the philosophy
of science” [5.9, p. 443]. Winsberg and Humphreys
make this assertion on the basis of the points we out-
lined in Sec. 5.2; namely, 1) the traditional limited
concern of philosophy of science with the justification
of theory, and 2) the relative autonomy of simula-
tions and simulation-building from the theory. The steps
involved in generating simulations, such as applying
approximation methods designed to generate compu-
tational tractability, are novel to science. These steps
do not gain their legitimacy from a theory but are “au-
tonomously sanctioned” [5.1, p. 837]. Winsberg argues,
for instance, that while idealization and approxima-
tion methods have been discussed in the literature it
has mostly been from a representational perspective in
terms of how idealized and approximate models rep-
resent or resemble the world and in turn justify the
theories on which they are based. But since simulations
are often employed where data are sparse, they cannot
usually be justified by being compared with the world
alone. Simulations must be assessed according to the
reliability of the processes used to construct them, and
these often distinct and novel techniques require sep-
arate philosophical evaluation. Mainstream philosophy
of science with its focus on theoretical justification does
not have the conceptual resources for accounting for
applications using computational methods. Even where
theory is concerned, both Humphreys and Winsberg
maintain that neither of the established semantic and
syntactic conception of theories, conceptions which fo-

cus on justification and representation, can account for
how theories are applied or justified in simulation mod-
eling.

However, Frigg and Reiss [5.28] have countered
that these claims were overblown and in fact simulation
raises no new questions or problems that are specific to
simulation alone. Part of the disagreement might sim-
ply come down to whether one construes philosophy of
science narrowly or broadly by limiting philosophical
questions to in-principle and normative issues, while
avoiding practical methodological ones. Another part of
the disagreement is over how one construes new issues
or new questions for philosophy, since certainly at some
level the basic philosophical questions about how rep-
resentations represent and what makes them reliably do
so, are still the same questions.

To some extent, part of the debate might be con-
strued as a disagreement over the relevance of contexts
of discovery to philosophy of science. Classically con-
texts of discovery, the scientific contexts in which
model-building takes place, are considered irrelevant
to normative philosophical assessments of whether
those models are justified or not. Winsberg [5.3] and
Humphreys [5.12] seem willing to assert that one of
the lessons for philosophy of science from simulation is
that practical constraints on scientific discovery matter
for constructing relevant normative principles – both in
terms of evaluating current practice, which in the case
of simulation-building is driven by all kinds of practical
constraints, and in terms of normatively directing prac-
tice sensitively within those constraints.

Part of the motivation for using the discov-
ery/justification distinction to define philosophical in-
terest and relevance is the belief that there is a clear
distinction between the two contexts. Arguably Frigg
and Reiss are reinforcing the idea of a clear dis-
tinction by relying on widespread presupposition that

lmagnani@unipv.it



Models and Simulations 5.3 What is Philosophically NovelAbout Simulation? 125
Part

A
|5.3

validation and verification are distinct independent pro-
cesses [5.4]. Validation is the process of establishing
that a simulation is a good representation, a quintessen-
tial concept of justification. Verification is the process
of ensuring that a computational simulation adequately
captures the equations fromwhich it is constructed. Ver-
ification, according to Frigg and Reiss, represents the
only novel aspects of modeling that simulation intro-
duces. Yet it is a purely mathematical exercise that is of
no relevance to questions of validation. As such, sim-
ulations involve no new issues of justification beyond
those of ordinary models. Winsberg [5.3, 4], however,
counters that there is, in practice, no clear division
between processes of verification and validation. The
equations chosen to represent a system are not simply
selected on the basis of how valid they are, but also
on the basis of decisions about computational tractabil-
ity. Much of what validates a representation in practice
occurs at the end stage, after all the necessary tech-
niques of numerical approximation and discretization
have been applied, by comparing the results of simula-
tions with the data. As such, [5.5]:

“If we want to understand why simulation results
are taken to be credible, we have to look at the epis-
temology of simulation as an integrated whole, not
as clearly divided into verification and validation –
each of which would look inadequate to the task.”

Hence what would otherwise seem to be distinct
discovery and justification processes are in the context
computational simulation interwoven.

Frigg and Reiss are right at some level that simu-
lations do not change basic epistemological questions
connected to the justification of models. They are also
right that Winsberg in his downward, motley and au-
tonomous description of simulation, does not reveal any
fundamentally new observations on model-building that
have not already been identified as issues by philoso-
phers discussing traditional modeling. However, what
appears to be really new in the case of simulation
is: 1) the complexity of the philosophical problems
of representation and reliability, and 2) the different
methodological and epistemological strategies that have
become available to modelers as a result of simulation.

Winsberg, in reply to Frigg and Reiss, has clarified
what he thinks as novel about theory-based simulation
as the simultaneous confluence of downward, motley
and autonomous features of model-building [5.4]. It is
the reliability and validity of the complexmodeling pro-
cesses instantiated by these three features that must be
accounted for by an epistemology of simulation, and
no current philosophical approaches are adequate to do
so, particularly not those within traditional philosophi-
cal boundaries of analysis.

As a first step in helping with this task of assess-
ing reliability and validity of simulation, philosophers
such as Winsberg [5.29] have drawn lessons from com-
parison with experimentation, which they argue shares
much with simulation in both function (enabling, for in-
stance, in silico experiments) and also in terms of how
the reliability of simulations is generated. Scientific re-
searchers try to control for error in their simulations,
and fix parameters, in ways that seem analogous to how
experimenters calibrate their devices. Simulations build
up credibility over long time scales and may have lives
of their own independent of developments in other parts
of science. These observations suggest a potentially rich
analogy between simulations and Hacking’s account of
experimentation [5.29]. In a normative step, based on
these links, Parker [5.10] has suggested that in fact
Mayo’s [5.30] rigorous error-statistical approach for ex-
perimentation should be an appropriate starting point
for more thorough evaluation of the results of simula-
tions. Simulations need to be evaluated by the degree to
which they avoid false positives when it comes to test-
ing hypotheses by successfully controlling for potential
sources of error that creep in during the simulation
process. At the same time a rather vigorous debate
has emerged concerning the clarification of the precise
epistemological dissimilarities or disanalogies between
simulation and traditional experimentation (see for in-
stance [5.31–36]). This question is in itself of inde-
pendent philosophical interest for assessing the benefits
and value of each as alternatives, but should also help
define the limits of the relevance of experimentation
as a model for understanding and assessing simulation
practices.

From our perspective, however, the new method-
ological and epistemological strategies that modelers
are introducing in order to construct and guarantee the
reliability of simulation models could prove to be the
most interesting and novel aspect of simulation with
which philosophers will have to grapple. Indeed, while
much attention has focused on the contrasts and similar-
ities between simulations, experiments and simulation
experiments, no one has called attention to the fact
that real-world experiments and simulations are also
being used in concert to enhance the ability of re-
searchers to handle uncertain complex systems. One
of the labs we have studied conducts bimodal model-
ing, where the modelers conduct their own experiments
in the service of building their models. We have an-
alyzed the case of one modeler’s behavior in which
model-building, simulation and experimentation were
tightly interwoven [5.37]. She used a conjunction of
experiment and simulation to triangulate on errors and
uncertainties in her model, thus demonstrating that the
two can be combined in practice in sophisticated ways.
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Her model-building would not have been possible with-
out the affordances of both simulation and her ability
to perform experimentation precisely adapted to test
questions about the model as she was in the process of
formulating it. Simulation and experiment closely cou-
pled in this fashion offers the possibility of extending
the capacity to produce reliable models of complex phe-
nomena.

Bimodal modeling is relatively easy to character-
ize epistemologically since experimentation is used to
validate and check the simulations as the model is
being constructed. Simulations are not relied on inde-
pendent of experimental verification. Often, however,
experimental or any kind of observational data are
hard to come by for practical or theoretical reasons.
More philosophically challenging will be to evaluate
the new epistemological strategies researchers are in
fact developing for drawing inferences in these often
deeply uncertain and complex contexts with the aid
of computation. Parker [5.38, 39], for instance, iden-
tifies the practice in climate science and meteorology
of ensemble modeling. No theory of model-building
exists that tells climate and weather modelers how to
go from physical theory to reliable models. Different
formulations using different initial conditions, models
structures and different parameterizations of those mod-
els that fit the observational data can be developed from
the physical theory. In this situation modelers average
over results from large collections of models, using dif-
ferent weighting schemas, and argue for the validity of
these results on the basis that these models collectively
represent the possibility space. However, considerable
philosophical questions emerge as to the underlying
justifiability of these ensemble practices and the proba-
bility weightings being relied upon. Background theory
can provide little guidance in this context and in the
case of climate modeling there is little chance for pre-
dictively testing performance. Further, the robustness of
particular ensemble choices is often very low and justi-
fications for picking out particular ensembles are rarely
carefully formulated.

The ability to generate and compare large num-
bers of complex models in this way is a development
of modern computational power. In our studies we
have also come across novel argumentation, particu-
larly connected with parameter-fixing [5.40]. Because
the parameter spaces these modelers have to deal with
are so complex, there is almost no chance of getting
a best fit solution. Instead modelers produce multiple
models often using Monte Carlo techniques that con-
verge on similar behavior and output. These models
have different parameterizations and ultimately repre-
sent the underlying mechanisms of the systems differ-
ently. However, modelers can nonethelessmake specific

arguments about network structure and dynamic rela-
tionships among specific variables. There is not usually
any well-established theory that licenses these argu-
ments. The fact that the models converge on the same
relevant results is motivation for inferring that these
models are right at least about those aspects of the
system for which they are designed to account. Unfor-
tunately, because access to real-world experimentation
is quite difficult, it is hard to judge how reliable this
technique is in producing robust models. What is novel
about this kind of strategy is that it implicitly treats
parameter-fixing as an opportunity, not just a problem,
for modelers. If instead of trying to capture the dy-
namics of whole systems modelers just fix their goals
on capturing robust properties and relations of a sys-
tem, the potential of finding results that work within
these constraints in large parameter-spaces increases,
and from the multiple models obtained modelers can
pare down to those that converge. The more complex
problem thus seems to allow a pathway for solving
a simpler one. Nonetheless, whether we should accept
these kinds of strategies as reliable and the models pro-
duced as robust remains the fundamental question, and
an overarching question for the field itself. It is a rea-
sonable reaction to suspect that something important is
being given up in the process, which will affect how
well scientists can assess the reliability and importance
of the models they produce. Whether the power com-
putational processes can adequately compensate for the
potential distortions or errors introduced is one of the
most critical and novel epistemological questions for
philosophy today.

The kinds of epistemological innovations we have
been considering raise deeper questions about the pur-
poses of simulation, particularly in terms of traditional
epistemic categories like understanding, explanation
and so on. Of course at one extreme some simulations of
the purely data-driven kind is purely phenomenological.
Theory plays no role in its generation, and is not sought
as its outcome. However in other cases some form of
understanding at least is sought. In many cases though,
where theory might be thought the essential agent of
understanding, the complexity of the equations and re-
sulting complexity of the computational processes that
instantiate them, simply block any way of decomposing
the theory or theoretical model in order to understand
how the theory might explain a phenomena and thus
assess the accuracy and plausibility of the underlying
mechanisms it might prescribe. Humphreys labels this
epistemic opacity [5.11]. Lenhard [5.41] in turn identi-
fies a form of pragmatic understanding that can replace
theoretical understanding when a simulation model is
epistemically opaque. This form of understanding is
pragmatic in the sense of being an understanding of how
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to control and manipulate phenomena, rather explain
them using background theoretical principles and laws.
Settling for this form of understanding is a choice made
by researchers in order to handle more complex prob-
lems and systems using simulations. But it is a novel
one in the context of physics and chemistry. In sys-
tems biology we recognize something similar [5.40].
Researchers give up accurate mechanistic understand-
ing of their systems for more pragmatic goals of gaining
network control, at least over specific variables. To do
so they use simplification and parameter-fitting tech-
niques that obscure the extent to which their models
capture the underlying mechanisms. Mechanistic ex-

planation is thus given up, for some weaker form of
understanding.

Finally, computational modeling and simulation in
the situations we have been considering in this section
are driving a profound shift in the nature and level of hu-
man cognitive engagement in scientific production pro-
cesses and their outputs [5.12, 24, 25, 42, 43]. So much
of philosophy of science has been based on intuitive
notions of human cognitive abilities. Our concepts of
explanation and understanding are constructed implic-
itly on the basis of what we can grasp as humans. With
simulation and big-data science those kinds of charac-
terizations may no longer be accurate or relevant [5.44].

5.4 Computational Simulation and Human Cognition

It is on this last point that we turn to consider the ways
in which human cognitive processes are implicated in
processes of simulation model-building. Computational
science, of the nonbig data or nonmachine learning kind
which we have focused on here, is as Humphrey’s calls
it, a “hybrid scenario” as opposed to an “automated sce-
nario” [5.12, p. 616]. In his words:

“This distinction is important because in the hy-
brid scenario, one cannot completely abstract from
human cognitive abilities when dealing with rep-
resentational and computational issues. . . . We are
now faced with a problem, which we can call the an-
thropocentric predicament, of how we, as humans,
can understand and evaluate computationally-based
scientific methods that transcend our own abilities.”

Unlike machine-learning contexts, computational
modeling is in many cases a practice of using compu-
tation to extend traditional modeling practices and our
own capabilities to draw insight out of low-data con-
texts and complex systems for which theory provides at
best a limited guide. In this way cognitive capacities are
often heavily involved. The hybrid nature of computa-
tional science thus motivates the need for understanding
how human agents cognitively engage with and con-
trol opaque computational processes, and in turn draw
information out of them. Evaluating these processes –
their productiveness and reliability – requires in the first
step having some understanding of them. As we will
see, although computational calculation processes are
beyond our abilities, at least in the case of systems bi-
ology the use of computation by modelers is often far
more integrated with their own cognitive processes and
understanding, and thus far more under their control,
than we might think.

As we have seen there are several lines of philo-
sophical research on computational simulation that un-

derscore it is through the processes of model-building –
taken to comprise the incremental and interwoven pro-
cesses of constructing the model and investigating
its dynamics through simulation – that the modeler
comes to develop at least a pragmatic understanding of
the phenomena under investigation. Complex systems,
such as investigated in systems biology, present per-
haps the extreme case in which these practices are the
primary means through which modelers, mostly nonbi-
ologists, develop understanding of the systems. In our
investigations, modelers called the building and run-
ning of their models under various conditions getting
a feel for the model, which enables them to get a feel
for the dynamics of the system.

In our investigations we have witnessed that model-
ers (mainly engineers) with little understanding of biol-
ogy have been able to provide novel insights and highly
significant predictions, later confirmed by biological
collaborators, for the systems they are investigating
through simulation. How is it possible that engineers
with little to no biological training can be making sig-
nificant biological discoveries? A related question con-
cerns how complete novices are making scientific dis-
coveries through simulations crowdsourced by means
of video games such as Foldit and EteRNA, which
appear to enable nonscientists to quickly build accu-
rate/veridical structures representing molecular entities
they had no prior knowledge of [5.45, 46]. Nersessian
and Chadrasekharan, individually and together [5.24,
25, 42, 47–49], have argued that the answer to this ques-
tion lies in understanding how computational simula-
tion enhances human cognition in discovery processes.
Because of the visual and manipulative nature of the
crowdsourcing cases, the answer points in the direction
of the coupling of the human sensorimotor systemswith
simulation models. These crowdsourcing models re-
represent conceptual knowledge developed by the sci-
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entific community (e.g., structure of proteins) as com-
putational representations with a control interface that
can be manipulated through the gamer’s actions. The
interface enables these novices to build new representa-
tions drawing on tacit/implicit sensorimotor processes.
Although the use of crowdsourcing simulations in sci-
entific problem solving is new, the human sensorimotor
system has been used explicitly to detect patterns,
especially in dynamic data generated by computational
models, since the dawn of computational modeling.
Entire disciplines and methods have been built using
visualized patterns on computer screens. Complexity
theory [5.50, 51], artificial life [5.52, 53] and compu-
tational chemistry [5.54, 55] provide a few exemplars
where significant discoveries have been made.

Turning back now to the computational simula-
tions used by scientists that we have been discussing,
all of the above suggests that the model-building pro-
cesses facilitate a close coupling between the model and
the researcher’s mental modeling processes even in the
absence of a dynamic visualization. The building pro-
cess manipulates procedural and declarative knowledge
in the imagination and in the representation, creating
a coupled cognitive system of model and modeler [5.25,
42, 43, 48, 56, 57]. This coupling can lead to explicit
understanding of the dynamics of the system under
investigation. The notion of a coupled cognitive sys-
tem is best understood in terms of the framework of
distributed cognition [5.58, 59], which was developed
to study cognitive processes in complex task environ-
ments, particularly where external representations and
other cognitive artifacts and, possibly, groups of peo-
ple, accomplish the task. The primary unit of analysis is
the socio-technical system that generates, manipulates
and propagates representations (internal and external to
people). Research leading to the formation of the dis-
tributed cognition framework has focused largely on
the use of existing representational artifacts and less
so on the building/creation of the artifacts. The central
metaphor is that of the human offloading complex cog-
nitive processes such as memory to the artifact, which,
for example, in the canonical exemplar of the speed bug
that marks critical airspeeds for a particular flight, re-
places complex cognitive operations with a perceptual
operation and provides a publically available represen-
tation that is shared between pilot and co-pilot.

In the research cited above, we have been arguing
that offloading is not the right metaphor for under-
standing the cognitive enhancements provided through
the building of novel computational representations.
Rather, the metaphor should be that of coupling be-
tween internal and external representations. Delving
into the modifications needed of the distributed cogni-
tion framework to accommodate the notion of a coupled

cognitive system would take use too far afield in this
review (but see [5.25]). Instead, we will flesh out the no-
tion a bit by noting some of the ways in which building
and using simulation models enhance human cognitive
capabilities and, in particular, extend the capability of
the imagination system for simulative model-based rea-
soning.

A central, but yet not well-researched premise
of distributed cognition is, as Hutchins has stated
succinctly, that “humans create cognitive powers by
creating the environments in which they exercise
those powers” [5.58, p. 169]. Since building modeling-
environments for problem solving is a major component
of scientific research [5.49], scientific practices provide
an especially good locus for examining the human
capability to extend and create cognitive powers. In the
case of simulation model-building, the key question
is: What are the cognitive changes involved in building
a simulation model and how do these lead to discover-
ies? The key cognitive change is that over the course of
many iterations of model-construction and simulation,
the model gradually becomes coupled with the mod-
eler’s imagination system (mental model simulation),
which enables the modeler to explore different scenar-
ios. The coupling allows what if questions in the mind
of the modeler to be turned into detailed explorations
of the system, which would not be possible in the mind
alone. The computational model enables this explo-
ration because as it is incrementally built using many
data sets, the model’s behavior, in the systems biology
case, for instance, comes to parallel the dynamics of the
pathway. Each replication of experimental results adds
complexity to the model and the process continues until
the model is judged to fit all available data well. This
judgment is complex, as it is based on a large number
of iterations where a range of factors such as sensitivity,
stability, consistency, computational complexity and so
forth are explored. As the model gains complexity it
starts to reveal or expose many details of the system’s
behavior enabling the modeler to interrogate the model
in ways that are not possible in the mind alone (thought
experimenting) or in real-world experiments. It makes
evident many details of the system’s behavior that the
modeler could not have imagined alone because of the
fine grain and complexity of the details.

The parallel between computation simulation ex-
perimenting and thought experimenting is one philoso-
phers have commented on, but the current framing
of the discussion primarily centers on the issue of
interpreting simulations and whether computational
simulations should be construed as opaque thought
experiments [5.60, 61]. Di Paolo et al. [5.60] have ar-
gued that computational models are more opaque than
thought experiments, and as such, require more system-
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atic enquiry through probing of the model’s behavior. In
a similar vein, Lenhard [5.61] has claimed that thought
experiments are more lucid than computational mod-
els, though it is left unclear what is meant by lucid
in this context, particularly given the extensive discus-
sions aroundwhat specific thought experiments actually
demonstrate. In the context of the discussion of the
relation of thought experimenting and computational
simulation, we have argued that the discussion should
be shifted from issues of interpretation to a process-
oriented analysis of modeling [5.47]. Nersessian [5.62]
casts thought experimenting as a form of simulative
model-based reasoning, the cognitive basis of which is
the human capacity for mental modeling. Thought ex-
periments (conceptual models), physical models [5.63]
and computational models [5.47, 48] form a spectrum
of simulative model-based reasoning in that all these
types of modeling generate and test counterfactual
situations that are difficult (if not impossible) to imple-
ment in the real world. Both thought experiments and
computational models support simulation of counter-
factual situations, however, while thought experiments
are built using concrete elements, computational mod-
els are built using variables. Simulating counterfactual
scenarios beyond the specific one constructed in the
thought experiment is difficult and requires complex
cognitive transformations to move away from the con-
crete case to the abstract, generic case. On the other
hand, computational simulation constructs the abstract,
generic case from the outset. Since computational mod-
els are made entirely of variables, they naturally support
thinking about parameter spaces, possible variations
to the design seen in nature, and why this variation
occurs rather than the many others that are possi-
ble.

Thought experiments are a product of a resource
environment in science where the only tools available
were writing implements, paper (blackboards, etc.) and
the brain. Computational models create cognitive en-
hancements that go well beyond those resources and
enable scientists to study the complex, dynamic and
nonlinear behaviors of the phenomena that are the fo-
cus of contemporary science.

Returning to the nature of the cognitive enhance-
ments created, the coupling of the computational model
with the modeler’s imagination system significantly en-
hances the researcher’s natural capacity for simulative
model-based reasoning, particularly in the following
ways:

� It allows running many more simulations, with
many variables at gradients not perceivable or ma-
nipulable by the mind, which can be compared and
contrasted.

� It allows testing what-if scenarios with changes
among many variables that would be impossible to
do in the mind.� It allows stopping the simulation at various points
and checking and tracking its states. If some de-
sirable effect is seen, variables can be tweaked in
process to get that effect consistently.� It allows taking the system apart as modules, sim-
ulating them, and putting them together in different
combinations.� It allows changing the time in which intermediate
processes kick in.

These complex manipulations expose the modeler
to system-level behaviors that are not possible to exam-
ine in either thought alone or in real-world experimenta-
tion. The processes involved in building the distributed
model-based reasoning system comprising simulation
model and modeler enhance several cognitive abilities.
Here we will conclude by considering three (for a fuller
discussion see [5.25]). First, the model-building pro-
cess brings together a range of experimental data. Given
Internet search engines and online data bases, current
models synthesize more data than even before and cre-
ate a synthesis that exists nowhere in the literature and
would not be possible for modelers or biologists to
produce on their own. In effect, the model becomes
a running literature review. Thus, modeling enhances
the synthesizing and integrating capabilities of the mod-
eler, which is an important part of the answer as to how
a modeler with scant biological knowledge can make
important discoveries. Second, an important cognitive
effect of the model-building is to enhance the mod-
eler’s powers of abstraction. Most significantly, through
the gradual process of thousands of runs of simulations
and analyses of system dynamics for these, the modeler
gains an external, global view of the system as a whole.
Such a global view would not be possible to develop
just from mental simulation, especially since the inter-
actions among elements are complex and difficult to
keep track of separately. The system view, together with
the detailed understanding of the dynamics, provides
the modeler with an intuitive sense (a feeling for the
model) of the biological mechanisms that enables her
to extend the pathway structure in a constrained fash-
ion to accommodate experimental data that could not
be accounted for by the current pathway from which
the model started. Additionally, this intuitive sense of
the mechanism built from interaction with the model
helps to explain the success of the crowdsourcing mod-
els noted above (see also [5.64]).

Finally, the model enhances the cognitive capac-
ity for counterfactual or possible-worlds thinking. As
noted in our discussion of thought experimenting, the
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model-building process begins by capturing the re-
actions/interactions using variables. Variables provide
a place-holder representation, which when interpreted
with combinations of numbers for these variables, can
generate model data that parallels the known experi-
mental data. One interesting feature of the place-holder
representation is that it provides the modeler with a flex-
ible way of thinking about the reactions, as opposed to
the experimentalist who works with only one set of val-
ues. Once the model is using the experimental values,
the variables can take any set of values, as long as they
generate a fit with the experimental data. The modeler
is able to think of the real-world values as only one
possible scenario, to examine why this scenario is com-
monly seen in nature, and envision other scenarios that
fit. Thinking in variables supports both the objective
modelers often have of altering or redesigning a reac-
tion (such as the thickness of lignin in plant wall for
biofuels) and the objective of developing generic design
patterns and principles. More broadly, the variable rep-
resentation significantly expands the imagination space
of the modeler, enabling counterfactual explorations of
possible worlds that far outstrip the potential of thought
experimenting alone.

A more microscopic focus like this one on the actual
processes by which computational simulation is cou-
pled with the cognitive processes of the modeler begins
to help break down some of the mystery and seeming
inscrutability surrounding computation conveyed by the

idea that computational processes are offloaded auto-
mated processes from which inferences are derived.
The implications of this research into hybrid nature of
simulation modeling are that modelers might often have
more control over and insight into their models and
their alignment with the phenomena than philosophers
have realized. Given the emphasis placed in published
scientific literature on fitting the data and predictive
success for validating simulations, we might be missing
out on the important role that these processes internal
to the model-building or discovery context appear to
be playing (from a microanalysis of practice) in sup-
port of the models constructed. Indeed, the ability of
computational modeling to support highly exploratory
investigative processes makes it particularly relevant for
philosophers to have fine-grained knowledge of model-
building processes in order to begin to understand why
models work as well as they do and how reliable they
can be considered to be.
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