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Abstract
A core property of robust systems is given by the invariance of their function against the removal of some of their structural 
components. This intuition has been formalised in the context of input–output maps, thereby introducing the notion of exclu-
sion independence. We review work on how this formalisation allows us to derive characterisation theorems that provide a 
basis for the design of robust systems.
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Introduction: What are robust systems?

The robustness of a system, be it biological or artificial, 
always refers to a set of perturbations. A biological system 
has to cope with a number of perturbations, including a con-
stantly changing environment (Wagner 2007 gives a general 
introduction to the robustness of biological systems). One 
way to do so is by shaping and controlling its environment 
in a way that reduces perturbations. This is often referred to 
as niche construction, which can take place in the ecologi-
cal as well as the social domain (Flack et al. 2006; Krakauer 
et al. 2009). Another way to deal with perturbations is by 
an intrinsic adaptation, change of the system itself and not 
the environment, so that the system’s function remains 
unchanged. It is this second way of coping with perturba-
tions that we are addressing in this article. The setting in 
which we want to study this kind of robustness is kept very 
simple, as shown in Fig. 1. It is given by a (stochastic) map 
that receives n inputs and generates a, potentially high-
dimensional, output. It is surprising how far-reaching this 
minimalistic setting is. It is general enough for studying the 
robustness of a number of biologically relevant mappings, 
such as the genotype-phenotype map, the genetic code, and 
neurons. However, addressing such application fields is 

beyond the scope of this article. Our aim is rather moderate. 
We review previous work on this subject and highlight the 
main insights in a more direct, instructive and conceptually 
complete way. The presented theory has been initially pro-
posed by Ay and Krakauer (2007) and further developed in 
a number of works, including (Ay et al. 2007; Krakauer et al. 
2010; Boldhaus et al. 2010; Rauh 2013; Rauh and Ay 2014). 
It touches upon important subjects related to robustness, 
such as niche construction, adaptation and neutrality, which 
have been addressed from various perspectives in a large 
number of publications. This article is by no means com-
plete in providing a review of these publications. Instead, it 
restricts attention to the mentioned works in which connec-
tions to other works are outlined more thoroughly.

In order to study edge or node deletion, which we also 
call knockout intervention or simply knockout, we consider 
a single unit of the network, the output unit, together with 
all its parents I ∶= {1,… , n} , which provide the input. We 
denote the input variables by X1,… ,Xn and the output vari-
able by Y. Correspondingly, the values of Xi are denoted 
by xi and the values of Y by y (see Fig. 1). Throughout this 
article, we assume that xi and y are elements of some non-
empty and finite state spaces, Xi and Y , respectively. For a 
subset J of I, we write XJ for the Cartesian product of the Xi , 
i ∈ J , and denote its elements by xJ.

We model the mechanism of Y as a stochastic map �(x;y) 
which assigns to each input x = (x1,… , xn) a random output 
y, that is �(x;y) ≥ 0 and 

∑
y� �(x;y

�) = 1 for all x , y. Such a 
map is called a Markov kernel. In this article, we study robust-
ness with respect to knockouts of some of the input nodes I. 
When a subset K of the input nodes is removed, typically the 

 *	 Nihat Ay 
	 nay@mis.mpg.de

1	 Max Planck Institute for Mathematics in the Sciences, 
Leipzig, Germany

2	 Leipzig University, Leipzig, Germany
3	 Santa Fe Institute, Santa Fe NM, USA

http://orcid.org/0000-0002-8527-2579
http://crossmark.crossref.org/dialog/?doi=10.1007/s12064-020-00332-4&domain=pdf


310	 Theory in Biosciences (2020) 139:309–318

1 3

behaviour of the remaining system with input nodes J = I⧵K 
will be different. Without further assumptions, the post-knock-
out function is not determined by � and can be anything. We 
therefore consider another stochastic map, a Markov kernel, 
�J ∶ XJ × Y → [0, 1] as model of the post-knockout function 
(see Fig. 2).

A complete specification of the function is given by the 
family (𝜅J)J⊆I of all possible post-knockout functions, which 
we refer to as functional modalities. The Markov kernel � 
itself, which describes the behaviour of the system prior to any 
knockouts, can be identified with �I . Let us now come back to 
robustness. Intuitively, a system is considered to be robust if its 
post-knockout function coincides with, or does not deviate too 
much from, its pre-knockout function. Clearly, this cannot be 
non-trivially achieved if it has to hold for all knockout perturba-
tions. However, if we upper bound the number of deleted input 
nodes, typically by a much smaller number than n, then the 
problem of characterising robust systems turns out to be quite 
interesting. We will review such characterisations in this article.

In “Exclusion dependence” section, we provide a quan-
titative approach to the outlined invariance of function with 
respect to knockouts, referred to as exclusion dependence. 
Basically, it measures the deviation of the post-knockout func-
tion from the pre-knockout function. This already allows us to 
present our first characterisation of robust systems in “Neu-
trality” section, which is related to neutrality. In “Mechanistic 
modelling of knockout interventions” section, we introduce 
a mechanistic description of knockout perturbations, thereby 
relying on notions from statistical physics. This allows us to 
solve the problem of system identification based on experi-
mental knockouts in terms of the Möbius inversion. The solu-
tion is closely related to the Gibbs–Markov equivalence known 
from statistical physics. We present the subject of system iden-
tification in “Knockout interventions for system identification” 

section. Intuitively, the difficulty of a system’s identification in 
terms of knockout experiments is directly correlated with the 
robustness of that system. This follows formally from our sec-
ond characterisation of robust systems, presented in “Robust-
ness and interaction order” section. In the “Conclusions” 
section, we compare the two presented descriptions of robust 
systems and outline directions of research.

Exclusion dependence

By exclusion dependence, we mean the deviation or distance 
of the post-knockout function from the original function. 
With an appropriate distance measure, knockout interven-
tions can be studied in a quantitative manner, which allows 
us to derive a general robustness measure. Conceptually, any 
measure of robustness should incorporate the invariance of 
the system’s function against knockout of input nodes, say the 
nodes of a subset K. After the knockout, the system will have 
access only to the remaining input nodes, those in the com-
plement J ∶= I⧵K . In general, the function will be affected 
by such a knockout intervention. We measure the deviation of 
the post-knockout function �J from the original function � in 
x = (xJ , xK) by using the relative entropy or Kullback-Leibler 
divergence (KL-divergence) as a distance measure. For two 
probability vectors p and q on a finite set Z , it is defined as

with the convention p(z) ln p(z)

q(z)
= 0 if p(z) = 0 , and 

p(z) ln
p(z)

q(z)
= ∞ if p(z) > q(z) = 0 . The KL-divergence satis-

fies the following fundamental property:

The KL-divergence is well-known as a canonical divergence 
in information geometry (Amari and Nagaoka 2000; Amari 
2016; Ay and Amari 2015; Ay et al. 2017). We now use the 
KL-divergence in order to quantify the deviation of the post-
knockout function �J from the original function � , given that 
they both have input x = (xJ , xK):

D(p ‖ q) ∶= �
z∈Z

p(z) ln
p(z)

q(z)
,

(1)
D(p‖q) ≥ 0, and D(p‖q) = 0 if and only if p = q.

(2)

D
�
�(xJ , xK ;⋅) ‖ �J(xJ;⋅)

�
∶=

�
y

�(xJ , xK ;y) ln
�(xJ , xK ;y)

�J(xJ;y)
.

x1 x2 x4 x5

y

Fig. 1   An input–output map for the study of robustness

Fig. 2   Left: unperturbed func-
tion. Middle: knockout of node 
3. Right: knockout of nodes 2 
and 6

x1 x4 x5

y

x1 x4 x5
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Given the property (1) of the KL-divergence, this deviation 
vanishes if and only if the post-knockout function coincides 
with the original function in x = (xJ , xK) , that is

Note that this invariance of the function refers to the input x . 
This does not necessarily mean that the function will also be 
invariant in the context of another input x′ . Let us consider 
an input distribution � with support S . Taking the mean of 
the individual KL-divergences (2) with respect to � yields

which we refer to as exclusion dependence (Ay and Krakauer 
2007). Obviously, the exclusion dependence vanishes if and 
only if the invariance (3) holds for all x ∈ S . We now relate 
the invariance of function to stochastic independence. To be 
more precise, we set

and define the conditional mutual information of Y and XK , 
given XJ:

Instead of considering the actual post-knockout function �J , 
we now ask how close we can be in principle to the original 
function, if we allow any post-knockout function �′

J
 from 

the set KJ of Markov kernels that only use the remaining 
nodes J as input units. Clearly, the actual post-knockout 
function �J is contained in that set, which gives us the fol-
lowing inequality:

Here, �∗
J
 is chosen such that, among all post-knockout func-

tions, it has the smallest achievable deviation from the origi-
nal function. The geometric interpretation of this minimisa-
tion is shown in Fig. 3.

One can show that any such minimiser has to satisfy the 
following condition.

(3)�(xJ , xK ;y) = �J(xJ;y) for all y.

D�(� ‖ �J) ∶=
�
x

�(x)
�
y

�(x;y) ln
�(x;y)

�J(xJ;y)
,

p(xJ , xK , y) ∶=�(xJ , xK) �(xJ , xK ;y)

=Prob
{
XJ = xJ ,XK = xK , Y = y

}

I(Y;XK |XJ)

∶=
∑
xJ

p(xJ)
∑
y, xK

p(y, xK|xJ) ln
p(y, xK|xJ)

p(y|xJ) p(xK|xJ)

=
∑
xJ , xK

p(xJ , xK)
∑
y

p(y|xJ , xK) ln
p(y|xJ , xK)
p(y|xJ) .

(4)
D�(� ‖ �J) ≥ inf

��
J
∈KJ

D�(� ‖ ��
J
)

= D�(� ‖ �∗
J
) = I(Y;XK �XJ) ≥ 0.

(5)𝜅∗
J
(xJ;y) = p(y|xJ), whenever p(xJ) > 0.

Thus, the post-knockout function is almost uniquely deter-
mined. If the exclusion dependence vanishes then, with the 
estimate (4), we have: 

1.	 The conditional mutual information I(Y;XK |XJ) van-
ishes. This is equivalent to the conditional independence 
Y ⟂⟂ XK |XJ . This is a property of � and � together.

2.	 The post-knockout function �J is a minimiser of the 
exclusion dependence, so that it is (almost) uniquely 
determined by the RHS of (5).

In what follows, we want to require exclusion independence 
for a number of knockout scenarios, not just restricted to one 
subset K. Assume that we want the function to be invariant 
with respect to the deletion of at most k input units. In that 
case, we have exclusion independence for all K with |K| ≤ k . 
Thus,

These conditional independence statements encode in an 
implicit way those probability distributions that ensure 
exclusion independence. Again, these conditions refer to 
the input distribution � and the Markov kernel � . The fam-
ily of post-knockout functions �I⧵K , |K| ≤ k , is then (almost) 
uniquely determined by � and � . Using algebraic geometric 
methods, one can determine those pairs � and � that satisfy 
Eq. (6) (Rauh 2013). An outcome of this analysis is Theo-
rem 1 presented below. It highlights the role of neutrality 
for robust systems. To be more precise, assume that we have 
exclusion independence against the knockout of any node 
set K with at most k elements. Then, for two configurations 
(xJ , xK) and (xJ , x�K) in S , we have

Note that this property refers to � and does not involve the 
post-knockout function �J . It basically says that any function 
� that is invariant with respect to knockouts has also to be 
invariant with respect to mutations (change of the states of 

(6)Y ⟂⟂ XK |XI⧵K for all K ⊆ I, |K| ≤ k.

(7)
�(xJ , xK ;y) = p(y|xJ , xK) = p(y|xJ)

= p(y|xJ , x�K) = �(xJ , x
�
K
;y).

Fig. 3   Optimal function after knockout
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K from xK to x′
K

 ). Mutational neutrality has been the subject 
of genetic robustness (Arjan et al. 2003; Schuster et al. 1994; 
Fontana 2006). We are now going to highlight neutrality 
from a geometric perspective.

Neutrality

Both, the input distribution � as well as the Markov kernel 
� , are involved in the condition (6). We now present a way 
how to construct � so that the condition (6) is satisfied, based 
on a given input distribution � . Let us assume that we want 
to delete at most k input nodes while keeping the function 
(stochastic map) invariant. The Hamming distance of two 
input configurations x = (x1,… , xn) and x� = (x�

1
,… , x�

n
) 

is given by the number of indices i for which xi ≠ x′
i
 . We 

now connect two configurations x and x′ in the support S 
of � if their Hamming distance is smaller than or equal to k. 
This way, we obtain a graph with node set S . The connected 
components of this graph play a particularly important role 
for exclusion independence. It turns out that exclusion inde-
pendence is achieved by the stochastic map � , which takes 
an input configuration from XI and generates a stochastic 
output y ∈ Y , if and only if it is neutral on these connected 
components. More precisely, if �(x;y) = �(x�;y) for all y ∈ Y 
whenever x and x′ are from the same connected component, 
then the condition (6) is satisfied. The values of the Markov 
kernel outside of S do not play a role here.

In order to illustrate the construction, let us consider an 
example. Say that we have only two input units with state 
sets X1 = X2 = {1,… , 16} , and assume that out of the 256 
joint configurations, some of them are in the support S of 
the input distribution � , as shown in Fig. 4a.

For the illustration of the construction, it is easier to 
consider the graph metric given by the network shown in 
Fig. 4 a, instead of the Hamming distance. This yields the 
induced network where two elements in S are connected if 
their distance equals one. The resulting connected compo-
nents are shown in Fig. 4b. We denote the set of connected 

components N by �(S) . Now we are free to define � in such 
a way that it outputs the same distribution �N(y) on Y for two 
elements x , x′ contained in the same connected component 
N. This neutrality is illustrated by colouring each of the con-
nected components by a single colour in Fig. 4c.

Theorem 1  (see Proposition 3 in Rauh and Ay 2014) Let 
S be a non-empty set of input configurations. We connect 
two points in S if their Hamming distance is at most k. The 
resulting network divides S into connected components, and 
we denote their set by �(S) . Furthermore, consider a prob-
ability measure � on �(S) , and for each N ∈ �(S) a prob-
ability measure �N on XI with support N and a probability 
measure �N on Y . Then the following joint distribution satis-
fies the conditional independence statements (6):

On the other hand, any joint distribution that satisfies the 
conditional independence statements (6) has the structure 
(8).

The situation is illustrated in Fig. 5. The result of Theo-
rem 1 highlights the concept of neutrality which is an impor-
tant concept in robustness studies (Wagner 2007).

Given an input distribution � , this theorem allows us to 
construct stochastic maps � that ensure k-exclusion inde-
pendence. This is done in several steps. 

1.	 Consider the connected components �(S) of the support 
set S of �.

2.	 For each N ∈ �(S) , choose a probability distribution �N 
on Y.

3.	 For x ∈ S , we denote by N
x
 the connected component 

N ∈ �(S) that contains x and define 

 Outside of S , � can be chosen arbitrarily.

(8)p(x, y) =
∑

N∈�(S)

�(N)�N(x) �N(y).

�(x;y) ∶= �N
x

(y).

Fig. 4   a A set S in XI ; b the connected components of S ; c neutrality of the map on the connected components, indicated by colour
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Mechanistic modelling of knockout 
interventions

In what follows, we introduce a particular way of specifying 
a family (�J) of functional modalities. We consider a func-
tion Q(x;y) that describes the affinity of the node to assume 
the state y given the input x = (x1,… , xn) . With such a func-
tion, the corresponding Markov kernel can be defined as

Here, we adopt the terminology from statistical physics, 
where the structure (9) of a so-called Boltzmann–Gibbs dis-
tribution originates from, and refer to the function Q also 
as an energy function. Without any further specification of 
the energy function, the structure (9) of a stochastic map is 
quite general. The only restriction comes from the fact that 
all transition probabilities �(x;y) are positive. This implies, 
for instance, that deterministic functions, such as Boolean 
functions, cannot be modelled in this way directly. However, 
these functions can be approximated in terms of stochastic 
maps of the form (9) arbitrarily well.

One can interpret the structure (9) as a “black-box” 
description of a stochastic input–output map, which does 
not incorporate any information about the mechanisms that 
actually give rise to that map. In fact, one can imagine many 
mechanisms that generate the same input–output mapping. 
In general, each of these mechanisms will lead to a differ-
ent function as result of a deletion of input units. Therefore, 
the prediction of a post-knockout function requires some 
level of mechanistic description. We now introduce such a 
description and demonstrate how it can be used to predict 
any post-knockout function of the system. The main idea is 
to decompose the energy function Q into interaction terms 
�A(xA;y) , thereby employing another concept from statisti-
cal physics. Each of these terms quantifies to what extent 
the input nodes in A work together and thereby contribute 

(9)�(x;y) =
eQ(x;y)∑
y� e

Q(x;y�)
.

to the overall function. Their contribution can be positive or 
negative, that is excitatory or inhibitory.

As an illustration, consider the example shown in Fig. 6. 
In this example, there are three interaction terms that con-
tribute to the function Q and thereby to the output y via the 
stochastic map (9):

This additional information on how the function Q is 
composed in individual interaction terms already allows 
us to model and study knockouts. To illustrate this, let 
us assume that, for instance, node 3 is knocked out. As it 
is not present anymore, it cannot interact with any other 
node. Therefore, it is natural to assume that, as result of 
the knock-out intervention, all interactions �A(xA;y) that 
involve node 3 are now discarded. In our example, this cor-
responds to removing �{1,2,3}(x1, x2, x3;y) and �{3,4}(x3, x4;y) 
from the right-hand side of (10), as illustrated in Fig. 7.With 
J ∶= {1, 2, 4, 5, 6} — node 3 is removed—the resulting post-
knockout function is then given as

Note that this is a modification of the stochastic map (9), 
where all contributions of node three are removed from the 
energy function Q. Let us discuss two situations here. Let us 
first assume that the post-knockout function is different from 
the original function. This implies that node 3 is involved 
in at least one interaction term, so that we would be able 
to infer some mechanistic aspects of the role that node 3 
plays in generating the output y. However, we cannot con-
clude that node 3 does not play any role if we do not see a 
difference between the pre- and post-knockout functions. 
This invariance of function is an essential requirement for 
robustness. A robust system, therefore, does not easily reveal 

(10)
Q(x1,… , x6;y) = �{1,2,3}(x1, x2, x3;y)

+ �{3,4}(x3, x4;y) + �{5,6}(x5, x6;y).

(11)�J(xJ;y) =
e�{5,6}(x5,x6;y)∑
y� e

�{5,6}(x5,x6;y
�)
.

x1 x2 x4 x5 x6

y

Nx

p(x) =
∑

N∈N(S)

α(N)µN (x)

κ(x; y) = λNx(y)

Fig. 5   Structure of a robust map

x1 x2 x4 x5

y

φ{5,6}(x5, x6; y)

Fig. 6   Decomposition of the affinity
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its internal mechanisms as a result of knockout interven-
tions. Our simple example already highlights two roles of 
knockout interventions or perturbations: We can distinguish 
between experimental knockouts, with which one aims at 
understanding the inner working of a system, and knockouts 
as exogenous perturbations that the system has to compen-
sate in order to perform its function. The subjects of system 
identification and robustness of systems will be discussed 
in further detail in the following sections. However, let us 
first extend our instructive example to the general setting of 
an arbitrary number of input nodes and a general interaction 
structure.

Assume that the energy function Q can be decomposed 
in terms of interactions �A , A ⊆ I , that is

which corresponds to (10). Consider the situation where a 
number of input nodes is knocked out and denote the set 
of remaining nodes by J. Then each interaction term that 
involves a node from the complement of J will be removed 
from the decomposition (12), leading to the direct extension 
of (11)

This family of stochastic maps, indexed by the subsets J 
of remaining nodes, describes all post-knockout functions, 
which represents one instance of the functional modalities 
we discussed above. As we will see, this is a quite general 
mechanistic perspective in the sense that any family of 

(12)Q(x;y) =
∑
A⊆I

𝜙A(xA;y),

(13)𝜅J(xJ;y) =
1

Z(xJ)
exp

{∑
A⊆J

𝜙A(xA;y)

}
, J ⊆ I,

(14)with Z(xJ) =
∑
y�

exp

{∑
A⊆J

𝜙A(xA;y
�)

}
.

strictly positive functional modalities can be represented 
this way.

Let us further illustrate this approach to modelling post-
knockout functions in terms of the following example from 
the field of neural networks.

Example 1  We consider a neuron which receives an input 
x = (x1,… , xn) ∈ {−1,+1}n and generates the output +1 
with probability

For a general output y ∈ {−1,+1} , this implies

This representation of the stochastic map � has a structure 
that allows us to infer the function after a knockout of a set 
K of input nodes, by simply removing the contribution of all 
the nodes in K. This leads to

where J = I⧵K . This inference of the post-knockout function 
is based on the decomposition of the sum that appears in the 
enumerator on the RHS of (16), 1

2

∑n

i=1
wi xi y . Mapping this 

to the representation (12), we clearly have �A = 0 whenever 
|A| ≠ 1 , and �{i}(xi;y) =

1

2
wi xi y , i = 1,… , n.

Knockout interventions for system 
identification

If the removal of some part of the system causes the loss 
or disturbance of one of its functions, then it is reasonable 
to attribute that function to the removed part. This intui-
tion underlies, for instance, some of our understanding of 
brain function which has been deduced from brain lesions. 
Such lesions are typically caused by an injury or disease. 
However, the same fundamental intuition also underlies 
knockout experiments that aim at the identification of the 
system’s mechanisms. One well-known example is given 
by gene knockouts.

Let us now study this intuition based on our formal model 
of knockout interventions which we developed in “Mecha-
nistic modelling of knockout interventions” section. We 
begin with the example shown in Fig. 6. We have already 
discussed the knockout of node 3, which gave us the post-
knockout function (11). This implies

(15)�(x; + 1) ∶=
1

1 + e−
∑n

i=1
wi xi

.

(16)�(x;y) ∶=
e

1

2

∑n

i=1
wi xi y

e
1

2

∑n

i=1
wi xi⋅(−1) + e

1

2

∑n

i=1
wi xi⋅(+1)

.

�J(xJ; + 1) =
1

1 + e−
∑

i∈J wi xi
,

x1 x2 x4 x5

y

φ{5,6}(x5, x6; y)

Fig. 7   Removal of the interaction terms �{1,2,3}(x1, x2, x3;y) and 
�{3,4}(x3, x4;y) as result of the knockout of node 3
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If we knock out nodes 4 and 5, the remaining contribution 
is from the nodes 1, 2, and 3:

Finally, for the knockout of nodes 1 and 5, the remaining 
contribution comes from nodes 3 and 4:

This shows that we can recover the interactions, up to some 
function of x , given by the normalisations Z, if we know 
the post-knockout function of some appropriately chosen 
knockouts. This backs up the strategy of system identifica-
tion in terms of knockout experiments. The non-uniqueness 
of the recovered interaction terms, due to the functions that 
only depend on the input x , does not harm here. Any family 
of interaction terms will represent the functional modalities 
�J , J ⊆ I , equally well.

Note that the knock-outs that reveal the individual 
interaction terms are also not unique. There are several 
appropriate knockout protocols. For instance, in the above 
example, we could also consider the three knockouts of 
node 1, node 4, and node 5, leading to a linear system

This can be easily solved, and we obtain again the inter-
actions from the post-knockout functions. Altogether, we 
have shown that two different knockout protocols, each of 
them involving only three knockout interventions, allow us 
to identify the three interaction terms of the system. In gen-
eral, the situation is much more complex. On the one hand, 
there can be many more interaction terms involved so that 
we will require correspondingly many knockout interven-
tions. We cannot assume that performing these interventions 
will always be feasible. On the other hand, even if only a few 
interactions are actually involved, without prior knowledge 

(17)
ln �{1,2,4,5,6}(x1, x2, x4, x5, x6;y)

= Z(x1, x2, x4, x5, x6) + �{5,6}(x5, x6;y).

(18)
ln �{1,2,3}(x1, x2, x3;y)

= Z(x1, x2, x3) + �{1,2,3}(x1, x2, x3;y).

(19)
ln �{3,4}(x3, x4;y)

= Z(x3, x4) + �{3,4}(x3, x4;y).

ln �{2,3,4,5,6}(x2, x3, x4, x5, x6;y)

= Z(x2, x3, x4, x5, x6)

+ �{3,4}(x3, x4;y) + �{5,6}(x5, x6;y),

ln �{1,2,3,5,6}(x1, x2, x3, x5, x6;y)

= Z(x1, x2, x3, x5, x6)

+ �{1,2,3}(x1, x2, x3;y) + �{5,6}(x5, x6;y),

ln �{1,2,3,4,6}(x1, x2, x3, x4, x6;y)

= Z(x1, x2, x3, x4, x6)

+ �{1,2,3}(x1, x2, x3;y) + �{3,4}(x3, x4;y).

on these interactions it is not possible to determine a cor-
respondingly small set of knockouts that would allow us to 
reveal the interactions within the system. Let us assume, 
for the moment, that we can perform all possible knockouts 
and measure the corresponding post-knockout functions. In 
theory, the resulting set of equations can be solved in terms 
of the Möbius inversion. Let us be more precise: Clearly, 
each �J in (13) is strictly positive. Using the Möbius inver-
sion, it is easy to see that each strictly positive family (�J) 
has such a representation. In order to see this, we simply set

Note that this representation is not unique: If an arbitrary 
function of xA is added to the function �A , then the func-
tional modalities remain unchanged. We have a one-to-one 
correspondence, modulo this ambiguity, between functional 
modalities and interactions:

In this section, we do not interpret a knockout as a natural 
perturbation but as an experimental test. The intention is 
to reveal the inner working, the mechanisms, of the sys-
tem based on its response to these unnatural perturbations. 
Indeed, we can identify important aspects of the interac-
tions. This is remarkable, because these interactions provide 
the basis of the unperturbed function. Thus, we perturb the 
system in order to understand the constituents of its unper-
turbed function. This provides a formal basis for knockout 
experiments.

It is important to note that the choice of the �A , A ⊆ I , for 
describing knockouts is essential. If we choose to represent a 
post-knockout function in terms of different interactions, say 
�B , B ⊆ I , we have to translate the effect of knockouts accord-
ingly. To be more precise, assume that we can represent the 
initial functions as

This implies

(20)𝜙A(xA, y) ∶=
∑
J⊆A

(−1)|A⧵J| ln 𝜅J(xJ;y) .

𝜅J , J ⊆ I ⟷ 𝜙A, A ⊆ I.

(21)𝜙A(xA;y) =
∑
B⊆A

𝛼A,B 𝜓B(xB;y), A ⊆ I.

(22)ln 𝜅J(xJ;y) ∼
∑
A⊆J

𝜙A(xA;y) (by (13))

(23)

=
∑
A⊆J

∑
B⊆A

𝛼A,B 𝜓B(xB;y) (by (21))

=
∑
B⊆J

( ∑
C⊆J⧵B

𝛼B∪C,B

)
𝜓B(xB;y)

=
∑
B⊆J

𝛽J,B 𝜓B(xB;y),
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where we define the coefficients �J,B accordingly. This cal-
culation highlights the following fact: When describing 
the post-knockout function �J in terms of the �A we simply 
remove all terms �A for which A is not contained in J, as 
described by (22). This is the basic requirement that defines 
the �A , A ⊆ I . When trying to represent the post-knockout 
function in terms of different interactions, �B , B ⊆ I , this 
rule changes. In order to see this, let us analyse the repre-
sentation (23). Also in this case, the terms �B do not appear 
whenever B is not contained in J. However, the coefficients 
�J,B change as a consequence of a knockout. That means, 
if we have an expansion of ln �(x;y) , where � is the unper-
turbed function, into terms �B , with weights �I,A , then sim-
ply removing weighted terms as result of a knockout is not 
sufficient.

Robustness and interaction order

Let (�J) be functional modalities, which we assume to be 
strictly positive. We know that they can be represented in 
terms of interactions, by the choice (20). How is exclu-
sion independence mapped to this representation? In 
order to answer this question, let us consider the situation 
where at most k input nodes are knocked out. In this case, 
k-exclusion independence implies that for |J| ≥ r ∶= n − k , 
B ⊂ J  with |B| = r , and x ∈ S  , we have the equality 
�J(xJ;⋅) = �B(xB;⋅) . Below we use the Möbius inversion 
(20) for the derivation of the interaction terms �A(xA;y) 
under the assumption of k-exclusion independence. In 
order to do so, we need to evaluate the following sum:

Together with (20) this gives us

�

J ⊆ A

�J� ≥ r

(−1)�A⧵J� ln 𝜅J(xJ;y)

=
�

J ⊆ A

�J� ≥ r

(−1)�A⧵J� 1� �J�
r

�
�

B ⊆ J

�B� = r

ln 𝜅J(xJ;y)

=
�

J ⊆ A

�J� ≥ r

(−1)�A⧵J� 1� �J�
r

�
�

B ⊆ J

�B� = r

ln 𝜅B(xB;y)

=
�

B ⊆ A

�B� = r

⎧⎪⎪⎨⎪⎪⎩

�
R⊆A⧵B

(−1)�A�−�R�−r 1� �R� + r

r

�

⎫⎪⎪⎬⎪⎪⎭

ln 𝜅B(xB;y).

where

depends only on the cardinalities of A and J. The represen-
tation (24) shows that k-exclusion independence implies a 
special structure of the underlying interactions. It suggests 
to consider the family of functional modalities (�J) given in 
terms of interactions �A with the structure

where �J are arbitrary functions that do not depend on xi , 
i ∉ J . Note that these functions are not indexed by A. Given 
this structure, we have

which represents a special case of (23). This proves that all 
functional modalities of a robust system involve interactions 
of order at most r. We denote by Mr the set of functional 
modalities (�J) that have the representation (26). Note that 
in this representation, each �J can have different coefficients 
�J,B . More precisely, if �B appears in the representation of 
�J and �J′ , the corresponding coefficients �J,B and �J′,B will 
be typically different. Summarising, we obtain the follow-
ing result.

Theorem 2  (see Theorem 15 in Rauh and Ay 2014) Let (�J) 
be a family of strictly positive functional modalities that is 

(24)

𝜙A(xA;y) =
∑

J ⊆ A

|J| < r

(−1)|A⧵J| ln 𝜅J(xJ;y)

+
∑

J ⊆ A

|J| ≥ r

(−1)|A⧵J| ln 𝜅J(xJ;y)

=
∑

J ⊆ A

|J| ≤ r

𝛼A,J ln 𝜅J(xJ;y),

𝛼A,J =

⎧
⎪⎨⎪⎩

(−1)�A�−�J�, if �J� < r∑
R⊆A⧵J(−1)

�A�−�R�−r 1

⎛
⎜⎜⎝
�R� + r

r

⎞
⎟⎟⎠

, if �J� = r

(25)
𝜙A(xA, y) ∶=

∑

J ⊆ A

|J| ≤ r

𝛼A,J 𝜓J(xJ;y),

(26)

ln 𝜅J(xJ;y) ∼
∑
A⊆J

𝜙A(xA, y)

=
∑
A⊆J

∑

J� ⊆ A

|J�| ≤ r

𝛼A,J� 𝜓J� (xJ� ;y)

=
∑

B ⊆ J

|B| ≤ r

𝛽J,B 𝜓B(xB;y),
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k-exclusion independent in all x ∈ S . Then there exists a 
family (��

J
) of functional modalities in Mr , with r = n − k , 

such that �J(x;⋅) = ��
J
(x;⋅) for all x ∈ S and all J ⊆ I.

This result implies that, in order to achieve k-exclusion 
independence, the order of interaction should not be too 
large. Such an interaction will break down as result of a 
knockout so that the remaining units will not be able to com-
pensate it. On the other hand, if the interactions are small 
enough, their removal can be compensated. This compensa-
tion is achieved by an appropriate change of the coefficients 
� in the representation (26). To be more precise, say that the 
interaction �B has a coefficient �I,B in the unperturbed func-
tion � = �I and assume that the node set K is knocked out, 
where B is still a subset of the remaining set J = I⧵K . Thus, 
in the post-knockout function �J , the term �B will still be 
involved. However, the coefficient �J,B will typically change 
in order to ensure the invariance of the function. Therefore, 
in order to design a robust system, we need the whole family 
of coefficients �J,B . This would allow the system to react to a 
knockout by immediately switching to the right post-knock-
out function �J . Alternatively, the knockout might initiate a 
re-adaptation process, which takes time to recover the origi-
nal function. In this case, it is not required to hard-wire all 
coefficients �J,B into the system. It is then sufficient to store 
the coefficients involved in the original function, that is �I,B . 
The other coefficients are obtained in terms of the recovery 
process. Such a process is particularly relevant within the 
study of biological robustness mechanisms.

Conclusions

We have reviewed results related to the robustness of func-
tion against knockout perturbations. In comparison with 
previous works, this article tries to draw a conceptually more 
complete picture, relying on existing theoretical results. On 
the one hand, it provides a solid justification of knockout 
experiments for system identification. On the other hand, it 
highlights the role of neutrality and low interaction order in 
the context of robust systems. These properties are associ-
ated with two corresponding characterisations of k-exclusion 
independent systems, Theorems 1 and 2. Thereby, neutrality 
and low interaction order, two at first sight seemingly unre-
lated aspects, are revealed to be equivalent. Even though we 
have this equivalence, we highlight an important difference 
in the corresponding representations. In the “neutrality rep-
resentation” (8) the map � is only specified on the support S 
of the input distribution � . The output of the map � for con-
figurations in the space between the connected components 
N ∈ �(S) , on which � is constant, can be arbitrarily chosen. 
This is fundamentally different in the “interaction represen-
tation” (26) of � , that is for J = I . It is indeed possible that 

the sum 
∑

B⊆I
�B�≤r

𝛽I,B 𝜓B(xB;y) is well-defined even for x ∉ S . 

The only requirement for x is that for each restriction xB with 
|B| ≤ r , there is a configuration x′

I⧵B
 such that the concatena-

tion (xB, x�I⧵B) is in the support S of the input distribution. 
Thus, the “interaction representation” comes with an extrap-
olation of the values on the connected components N ∈ �(S) 
to some part of the space in between. The role of such an 
extrapolation for robustness is currently unclear. It might 
allow the system to generalise to and deal with unforeseen 
situations in a reasonable way. This is absolutely not possible 
with the “neutrality representation”, which is nothing but a 
lookup table for all x ∈ S , with no restriction at all for 
x ∉ S . Coping with unforeseen situations in itself is a 
robustness property, which, however, is different from the 
way we have defined robustness in this article. Thus, the 
presented formalism might allow us to compare different 
notions of robustness. We already discussed one instance of 
this at the end of “Exclusion dependence” section: Invari-
ance of function with respect to knockout perturbations 
implies invariance of function with respect to mutations.
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