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a b s t r a c t

I study the interplay between stochastic dependence and causal relations within the
setting of Bayesian networks and in terms of information theory. The application of a
recently defined causal information flow measure provides a quantitative refinement of
Reichenbach’s common cause principle.
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1. Introduction

1.1. The problem of system identification

Understanding the interplay and the function of a system’s components generally requires not only phenomenological
studies of global complex behaviour but also the study of the system’s functional response to controlled experimental
perturbations. Ideally, with a corresponding experimental design one aims at a complete identification of the system’s
mechanisms. In the context of biological systems this is clearly a problematic issue. On the one hand, a biological systemmay
not be resistant to all experimental perturbations that would allow for its identification, and, on the other hand, the identity
of the system may change as a consequence of perturbations. Furthermore, in addition to these problems, there are also
technology constraints dictated by the scientific and financial means at hand. In view of these limitations, one has to address
the problem of specifying the kinds of conclusions that can be drawn based on a particular set of feasible experiments. This
requires a theoretical tool that is capable of modelling not only the system itself but also the data generating experimental
perturbations.
Most system-theoretical models distinguish three levels of mechanistic specifications:

(1) specification of the system’s units;
(2) structural description of the relations between the units;
(3) functional description of the units’ interactions.

Graph theory turns out to be very useful in providing a mathematical structure that serves as a model for levels (1) and (2)
of the system description. In this model, the nodes of a graph represent the units of the system and the edges describe their
relationship. In view of the model diversity currently present in the literature, an interpretation of edges strongly depends
on the particular context. In this paperwe follow Pearl’s conceptual line [14] by using edges as a qualitative representation of
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Fig. 1.

Fig. 2.

possible direct causal effects. Within Pearl’s theory the functional description of level (3) is based on the so-called structural
equation model originally developed in genetics [18]. In order to provide a self-consistent and coherent presentation I shall
give a review of relevant concepts of Pearl’s causality theory including the structural equation model (see the Appendix).
In Pearl’s causality theory, the concept of intervention, which is intended to capture controlled experimental

perturbations, plays an essential role in modelling causal effects within the system. Although experimental intervention
techniques such as knockoutmethods in genetics are of utmost importance for understanding function in biological systems,
the functional interpretation of corresponding post-interventional observations is often based on heuristic arguments
and needs further justification. Here, the interplay between causal effects and general stochastic associations is still a
source of confusion. In order to identify associations and the way they are generated by cause–effect relations in a
given system, observation and intervention are considered as elementary experimental operations. The identification of
associations of system variables is a subject of classical statistics and requires only the observation of these variables,
whereas the identification of cause–effect relations in general requires experimental intervention. Pearl’s theory addresses
the central problem of finding particular situations in which causal effects can be identifiedwithout any active experimental
intervention based on purely non-interventional observations. It is quite surprising that, indeed, there are several criteria,
including the back-door and front-door criteria, that provide such an identifiability test for causal effects [14]. Unfortunately,
the assumptions here require some structural information about the underlying network, which shows that replacement of
interventional data by purely observational data is not possible without any cost.
If the structural information that is required in the above-mentioned identifiability criteria is not available, someweaker

statements on the cause–effect relations can still be made. For instance, Reichenbach’s principle of common cause [15],
which is phrased by the slogan no correlation without causation, identifies a class of possible causal relations between two
variables A and B if they are stochastically dependent.1 It predicts that A is a cause of B, B is a cause of A, or there is a common
cause ofA and B as shown in Fig. 2. Clearly, in this qualitative statement the particular value of stochastic dependence ofA and
B is not used. A quantitative version of this statementwould providemore information about the system. This paper extends
the common cause principle in two directions: On the one hand, the main results (Theorems 3 and 4, Corollary 1) refer to
more than two variables, and, on the other hand, they make quantitative statements by relating the stochastic dependence
of these variables to causal information flows introduced in [3]. The following instructive example illustrates the main idea
of the paper.

1.2. An example

Consider, as shown in Fig. 1, two units A and B, where A has a direct causal effect on B but not vice versa. In this situation,
all stochastic dependence between A and B is due to the causal effect of A on B, and we can use the mutual information as a
measure for the causal information flow from A to B:

F(A→ B) := H(B)− H(B|A) = I(A : B), (1)

where H(B) denotes the entropy of B, H(B|A) denotes the conditional entropy of B given A, and I(A : B) is the mutual
information of A and B (see Section 3). This definition is somewhat confusing. The suggestive notation of the left-hand side
of (1) reflects the intuition that the causal information flow should be a directional quantity. On the other hand, mutual
information is symmetric in A and B. If we just observe A and B and do not know the direction of the arrow there is no
way to decide whether mutual information is an appropriate measure for the causal information flow from A to B. The
situation becomes even more subtle if we have a common cause C of A and B which induces positive mutual information
between A and B without having any causal information flow between A and B. Fig. 2 illustrates three completely different
causal structures that allow for observational equivalence on A and B. Can we say anything about causal information flows
in the network based on the observation of A and B only, without knowing the network structure? In order to illustrate in

1 We will use the term correlation as the synonym of stochastic dependence.
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what sense this is indeed possible we define the total causal information flow for the three situations as sums of the (local)
information flows along the arrows as defined in (1):

F(a) := F(A→ B), F(b) := F(B→ A), F(c) := F(C → A)+ F(C → B).

In all three cases the mutual information I(A : B) provides a lower bound for the total information flow:

I(A : B) = F(a) = F(b) ≤ F(c). (2)

The first two equalities in (2) trivially follow from the symmetry of mutual information, whereas the inequality is a
consequence of the conditional independence structure of the network (c) which implies H(A, B|C) = H(A|C) + H(B|C),
and therefore

I(A : B) = I(A : C)+ I(B : C)+ H(A|C)+ H(B|C)− H(A, B)
≤ I(A : C)+ I(B : C)+ H(A|C)+ H(B|C)− H(A, B|C)
= I(A : C)+ I(B : C).

Thus, in this example, without knowing the concrete underlying causal structure (a), (b), or (c) and corresponding
mechanisms that generate the observed data distribution, we can give a lower bound for the total causal information flow
in the network. This example represents a simplified quantitative version of Reichenbach’s common cause principle which,
in our setting infers positive causal information flow based on positive mutual information (stochastic dependence).

1.3. Organization of the paper

In the following Section 2 some concepts of Pearl’s theory of causation are briefly outlined. This theory is based on a formal
definition of intervention within the framework of Bayesian networks. Motivated by Reichenbach’s principle of common
cause, in Section 3 an optimal graphical criterion for the equivalence of intervention and observation will be provided. This
criterion characterizes those cases in which stochastic dependence can be interpreted as causal information flow, a notion
discussed in Section 4. The main section (Section 5) provides a lower bound for information flows in terms of the multi-
information of random variables and shows how this extends the common cause principle. Finally, the Appendix contains a
motivation of Pearl’s concept of intervention in terms of the structural equation model, and, furthermore, the proofs of the
theorems of the paper.

2. Preliminaries from Pearl’s causality theory

2.1. Directed acyclic graphs

We consider a directed graph G := (V , E) where V 6= ∅ is a finite set of nodes and E ⊆ V × V is a set of edges between
the nodes. An ordered sequence (v0, . . . , vk), k ≥ 0, of distinct nodes is called a (directed) path from v0 to vk with length k if
it satisfies (vi, vi+1) ∈ E for all i = 0, . . . , k − 1. Given two subsets A and B of V , and a path γ = (v0, . . . , vk) with v0 ∈ A
and vk ∈ B, we write A

γ
; B. If there exists a path such that A γ

; B we write A ; B, and A 6; B if this is not the case. Note
that v ; v for all v ∈ V (path of length 0). A directed acyclic graph (DAG) is a graph that does not contain two distinct nodes
v0 and vk with v0 ; vk and vk ; v0. Given a DAG, we define the parents of a node v as pa(v) := {u ∈ V : (u, v) ∈ E} and
its children as ch(v) := {w ∈ V : (v,w) ∈ E}. A set C ⊆ V is called ancestral if for all v ∈ C the parents pa(v) are also
contained in C . The smallest ancestral set that contains a set A is denoted by an(A), and one has

an(A) = {v ∈ V : v ; A} . (3)

In his graphicalmodels approach to causality, Pearl assumes a DAG as the structural specification of causal networks [14].
Within this specification an edge (v,w) is interpreted as a possible direct causal effect of the node v (direct cause) on the
nodew (direct effect). In other words, if there is no edge from v tow, then there is no possibility of directly influencingw by
v. Similarly, given two non-empty and disjoint sets A and B, A is called a cause of B, and B an effect A, if A ; B. More precisely,
A 6; B means that there is no possibility for direct or indirect causal influence of A on B. A node v ∈ V \ (A ∪ B) is called
common cause of A and B, if there is a path from v to A that does not meet B and a path from v to B that does not meet A.

2.2. Causal effects in Bayesian networks

In addition to the structural description given by a DAG one has to specify the nodes’ interactions by a mechanistic
description. In order to do so, for every node v ∈ V we consider a finite and non-empty set Xv of states. Given a subset
A ⊆ V , we writeXA instead of×v∈AXv (configuration set on A), and we have the natural projection

XA : XV → XA, (xv)v∈V 7→ xA := (xv)v∈A.

Note that in the case of A = ∅ the configuration set consists of exactly one element, namely the empty configuration which
we denote by ε.
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A distribution onXV is a vector p = (p(x))x ∈ RXV with p(x) ≥ 0 for all x ∈ XV and
∑
x p(x) = 1. Given a distribution p

onXV , the XA’s become random variables, and we write

p(xA) := Pr{XA = xA} for all xA ∈ XA,

and, if p(xA) > 0,

p(xB|xA) := Pr{XB = xB|XA = xA} for all xB ∈ XB. (4)

In particular, we have p(xB|ε) = p(xB) if A = ∅.
Given a DAG, we consider a family of conditional distributions kv(xpa(v); xv), v ∈ V , that is

kv(xpa(v); xv) ≥ 0 and
∑
xv

kv(xpa(v); xv) = 1.

If pa(v) = ∅ we write kv(xv) instead of kv(ε; xv). A triple B = (V , E, k) consisting of a DAG G = (V , E) and such a
family k = (kv)v∈V of kernels is called a Bayesian network. Within Pearl’s causality theory, the kernels kv are interpreted
mechanistically as autonomous physical processes that generate the states of the individual nodes v. This interpretation
justifies assuming the stability of a node’s mechanismwith respect to external intervention in other nodes. Themechanistic
interpretation can be motivated by the so-called structural equation model, which relates the kernels kv to deterministic
functions together with hidden random disturbances. This relation allows for a transparent definition of interventional
operations which are essential for understanding causal effects. It turns out that all causal aspects are independent from the
concrete representation of the kernels kv by structural equations. Therefore, I continue my presentation within the context
of Bayesian networks and briefly review the structural equation model in the Appendix of the paper.
The transition from the mechanistic description, given by a Bayesian network, to the phenomenological level is made by

the following formula for the joint distribution p(B) onXV :

p(x) = p(B; x) :=
∏
v∈V

kv(xpa(v); xv). (5)

If a given distribution p onXV can be decomposed in this way, we say that it admits a recursive factorization according to G.
In that case one has kv(xpa(v); xv) = p(xv|xpa(v)) if p(xpa(v)) > 0.
Given a Bayesian networkB = (V , E, k), one has the possibility of testing the system’s reaction to external intervention.

More precisely, we divide the set V into a subset A where the intervention takes place and the complement D := V \ A.
Intervening in Awith configuration x′A ∈ XA is modelled by the replacement of the mechanisms kv , v ∈ A, by the following
constant mechanisms:

kvint(xpa(v); xv) := δx′v (xv) =
{
1 if xv = x′v
0 otherwise.

This replacement of mechanisms leads to a new Bayesian network B̂ and a corresponding joint distribution according to (5)
given by

p(xD, xA ‖ x′A) := p(B̂; x) =
∏
v∈A

δx′v (xv)
∏
v∈D

kv(xpa(v); xv). (6)

Summation over all xA finally gives us

p(xD ‖ x′A) :=
∑
xA

p(xD, xA ‖ x′A)

=

∏
v∈D

kv(xpa(v)\A, x′pa(v)∩A; xv).

Replacing the pair (xD, x′A) by a global configuration x = (xD, xA) allows us to write this in a more transparent way:

p(xD ‖ xA) =
∏
v∈D

kv(xpa(v); xv). (7)

Thus, compared with the pre-interventional distribution (5), the post-interventional distribution (7) is obtained simply by
removing all factors kv(xpa(v); xv) where v is an element of A (truncated factorization). This is the probability of observing
XD = xD after having set XA = xA. It has to be distinguished from the probability p(xD|xA) of observing XD = xD after having
observed XA = xA. I refer to these two different ways of conditioning as interventional and observational conditioning and
use two bars ‘‘‖’’ in the first and one bar ‘‘|’’ in the second case. Obviously, for A = ∅we have p(xB ‖ ε) = p(xB).
Now consider B ⊆ D = V \ A. Then

p(xB ‖ xA) =
∑
xD\B

p(xB, xD\B ‖ xA) =
∑
xD\B

∏
v∈D

kv(xpa(v); xv). (8)
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Fig. 3.

Note that interventional conditioning, in contrast to observational conditioning (4), is defined for all xA ∈ XA. This is
consistent with the semantics of a mechanism: The mechanism is defined and virtually present even for cases that do not
appear in the actual distribution. The kernelXA×XB → [0, 1], (xA, xB) 7→ p(xB ‖ xA), is called causal effect. I use p(xB ‖ xA)
as a shorthand notation for the causal effect and hope that the distinction from its value at (xA, xB) becomes clear within the
particular context.

Example 1. This instructive example illustrates the difference between interventional and observational conditioning and
gives us a hint how to relate these two kinds of conditioning to each other. Consider the node set V = {1, 2, 3, 4} and the
edge set E = {(1, 2), (1, 3), (2, 4), (3, 4)} as shown in Fig. 3. For simplicity we assume that all kv(xpa(v); xv), v ∈ V , are
strictly positive. The joint distribution is given as

p(x1, x2, x3, x4) = k1(x1)k2(x1; x2)k3(x1; x3)k4(x2, x3; x4).

Firstly we compute the causal effect p(x3 ‖ x2) by using formula (8):

p(x3 ‖ x2) =
∑
x1,x4

p(x1, x3, x4 ‖ x2)

=

∑
x1,x4

k1(x1)k3(x1; x3)k4(x2, x3; x4)

=

∑
x1

k1(x1)k3(x1; x3)

= p(x3).

As we see, this is not dependent on x2, which is consistent with the fact that there is no edge from 2 to 3. On the other hand,
for the reason that both, node 2 and node 3 receive information from node 1, we expect that, in general, p(x3|x2) 6= p(x3).
This can be seen as follows:

p(x3|x2) =
p(x2, x3)
p(x2)

=

∑
x1,x4
k1(x1)k2(x1; x2)k3(x1; x3)k4(x2, x3; x4)∑

x1,x3,x4
k1(x1)k2(x1; x2)k3(x1; x3)k4(x2, x3; x4)

=

∑
x1
k1(x1)k2(x1; x2)k3(x1; x3)∑
x1
k1(x1)k2(x1; x2)

.

Now instead of nodes 2 and 3 we consider the nodes 1 and 4, which do not have a common cause, and compute the causal
effect p(x4 ‖ x1):

p(x4 ‖ x1) =
∑
x2,x3

p(x2, x3, x4 ‖ x1)

=

∑
x2,x3

k2(x1; x2)k3(x1; x3)k4(x2, x3; x4)

=

∑
x2,x3
k1(x1)k2(x1; x2)k3(x1; x3)k4(x2, x3; x4)

k1(x1)

=
p(x1, x4)
p(x1)

= p(x4|x1).
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As we see, in this case both kinds of conditioning lead to the same distribution. ?

Whether a causal effect p(xB ‖ xA) and the corresponding conditional distribution p(xB|xA) coincide or not depends, as
Example 1 indicates, on the presence of a common cause of A and B. In the next section, Reichenbach’s principle of common
cause [15] will provide an optimal graphical condition for the equivalence of interventional and observational conditioning,
which will be summarized in Theorem 2.

3. Entropy, mutual information, and the principle of common cause

The main intention of this paper is to carefully relate stochastic dependence (correlation) to causation in terms of
information-theoretic quantities. To this end, we recall some basic definitions which already appeared in the introduction
(see [6] for details): Consider two subsets A and B of V . The entropy of XB is defined as

Hp(XB) := −
∑
xB∈XB

p(xB) log2 p(xB).

This quantity is a natural measure of the uncertainty that one has about the outcome of XB, that is, the information one
expects to gain by observing that outcome. Knowing the outcome of XA in general changes the uncertainty that one has
about the outcome of XB. The resulting mean uncertainty is then quantified by the conditional entropy of XB given XA:

Hp(XB|XA) := −
∑

xA∈XA, xB∈XB

p(xA, xB) log2 p(xB|xA) ≤ Hp(XB).

In terms of these entropy measures, themutual information of XB and XA is defined as

Ip(XA : XB) := Hp(XB)− Hp(XB|XA) (9)

=

∑
xA

p(xA)
∑
xB

p(xB|xA) log2

 p(xB|xA)∑
x′A

p(x′A) p(xB|x
′

A)

 (10)

=

∑
xA, xB

p(xA, xB) log2

(
p(xA, xB)
p(xA) p(xB)

)
. (11)

According to (9) it measures the uncertainty reduction of the outcome of XB provided by the outcome of XA and vice versa.
The mutual information Ip(XA : XB) is a natural symmetric measure for the stochastic dependence of XA and XB.
If not necessary, the information-theoretic quantities will be used without explicitly mentioning the underlying

distribution p. For instance, H(X) will be used instead of Hp(X). Furthermore, basic properties of information-theoretic
quantities will be applied without further explanation. A standard reference is [6].
Now we consider a Bayesian networkB = (V , E, k) and the ancestral sets a := an(A) and b := an(B) (see Eq. (3)). Then

the above-mentioned quantities can be computedwith respect to the joint distribution p = p(B), generated byB according
to (5), and we obtain the following upper bounds for the mutual information of XA and XB.

I(XA : XB) ≤ I(Xa : Xb)
= H(Xa)+ H(Xb)− H(Xa∪b)
= H(Xa\b, Xa∩b)+ H(Xb\a, Xa∩b)− H(Xa\b, Xa∩b, Xb\a)

=
(
H(Xa∩b)+ H(Xa\b|Xa∩b)

)
+
(
H(Xa∩b)+ H(Xb\a|Xa∩b)

)
−
(
H(Xa∩b)+ H(Xa\b|Xa∩b)+ H(Xb\a|Xa∩b, Xa\b)

)
=
(
H(Xa∩b)+ H(Xa\b|Xa∩b)

)
+
(
H(Xa∩b)+ H(Xb\a|Xa∩b)

)
−
(
H(Xa∩b)+ H(Xa\b|Xa∩b)+ H(Xb\a|Xa∩b)

)
(conditional independence of Xa\b and Xb\a given Xa∩b)

= H(Xa∩b) (12)

≤

∑
v∈a∩b

log2 |Xv|.

Clearly, if a ∩ b = ∅ then the configuration setXa∩b consists of exactly one element which is the empty configuration. In
that case the entropy vanishes and, according to (12), this implies stochastic independence of XA and XB. On the other hand,
it is easy to see that the set a∩ b is empty if and only if none of the three conditions in Theorem 1 is satisfied, which proves
the following version of Reichenbach’s principle of common cause [15].
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Theorem 1 (Principle of Common Cause). Let B = (V , E, k) be a Bayesian network, and let A and B be two non-empty disjoint
subsets of V such that XA and XB are stochastically dependent with respect to the distribution p(B). Then one of the following
conditions is satisfied:
(1) A is a cause of B: A ; B,
(2) B is a cause of A: B ; A,
(3) A and B have a common cause: There is a node v ∈ V \ (A ∪ B) and a path from v to A outside of B and a path from v to B
outside of A.

The principle of common cause identifies qualitative causal relations of two variables based on their stochastic dependence.
The concept of d-separation, which is not applied in this paper, provides a direct proof of Theorem 1 [14,17]. The alternative
proof based on inequality (12) helps in understanding the connection between the common cause principle and information
theory. The elaboration of this connection is the main focus of the paper. Applying the notion of causal information flow [3],
I shall provide a quantitative extension of the common cause principle which implies the estimate (12). To this end, we need
a graphical criterion for the equivalence of interventional and observational conditioning where Theorem 1 can serve as a
guiding scheme. Reichenbach’s principle of common cause specifies three qualitatively different but not necessarily disjoint
classes of causal relations that give rise to the stochastic dependence of variables. In general, stochastic dependence is a
mixed consequence of the three causal relationships (1), (2), and (3) that appear in Theorem 1. Furthermore, it is clear that
in the case of (2) or (3) stochastic dependence that is not due to the causal effect ofA on B is possible. Therefore, Reichenbach’s
principle suggests characterizing the casewhere causal effects and conditional distributions coincide by assuming stochastic
dependence as a consequence of causal relations of the first kind only. Therefore, we exclude the cases (2) and (3) in the
following theorem.

Theorem 2. Let B = (V , E, k) be a Bayesian network, let A and B be two non-empty disjoint subsets of V such that B is not a
cause of A and there is no common cause of A and B. Then the conditional distribution and the causal effect coincide:

p(xB ‖ xA) = p(xB|xA) for all xA with positive probability p(xA).

This condition is optimal in the sense that, if it is not satisfied, then there exists a Bayesian network B′ = (V , E, k′) for which
there are xA and xB with p(xA) > 0 and p(xB ‖ xA) 6= p(xB|xA).

Theorem 2 implies that, knowing the marginal distribution p(xA, xB) (which we assume to be strictly positive here), and
knowing that B is not a cause of A and there is no common cause of A and B, one can compute the causal effect as

p(xB ‖ xA) = p(xB|xA) =
p(xA, xB)
p(xA)

=
p(xA, xB)∑
x′B

p(xA, x′B)
. (13)

In Pearl’s terminology, this is a special example of an identifiable causal effect p(xB ‖ xA). On the other hand, ifwe do not know
anything about the underlying graph structure, and, in particular, if we do not know whether the conditions of Theorem 2
are satisfied or not, it is not possible to use formula (13) for computing the causal effects explicitly. But this does not mean
that we cannot say anything about the causal structure as the principle of common cause shows. The intention of this paper
is to point out that we can say even more than that by using a quantitative extension of the common cause principle based
on the notion of causal information flows [3]. This notion is introduced in the following section.

4. Causal information flows

In order to quantify causal effects instead of general associations, in [3] we suggested replacing the conditional
probabilities p(xB|xA) in (10) by the interventional probabilities p(xB ‖ xA). This suggestion was based on concepts that
had been discussed in the previous work [10,2]. Given a Bayesian networkB = (V , E, k)we consider the joint distribution
p generated according to (5). Replacing p(xB|xA) by p(xB ‖ xA)means that we consider a new joint distribution p̂(xA, xB) :=
p(xA) p(xB ‖ xA) and the corresponding mutual information of XA and XB:

FB(XA → XB) := Îp(XA : XB)

=

∑
xA

p(xA)
∑
xB

p(xB ‖ xA) log2

 p(xB ‖ xA)∑
x′A

p(x′A) p(xB ‖ x
′

A)

 .
This measure quantifies the causal effect of A on B and has been termed (causal) information flow in [3]. We also use the
notation Fwhere the explicit reference to the underlying Bayesian networkB is omitted.
If B is not a cause of A and there is no common cause of A and B, then, according to Theorem 2, the mutual information of

XA and XB and the causal information flow from A to B coincide:
I(XA : XB) = F(XA → XB). (14)

In the following examples, all pairs of sets A and B have this property.
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Fig. 4.

Fig. 5.

Examples 2. (1) Direct causes. LetB = (V , E, k) be a Bayesian network. Then for all v ∈ V the sets A = pa(v) and B = {v}
satisfy

I(Xpa(v) : Xv) = F(Xpa(v) → Xv). (15)

(2) Ancestral sets. Let B = (V , E, k) be a Bayesian network, let A be an ancestral subset of V , and let B be an arbitrary
subset of V \ A. Then (14) holds.
(3) Feed-forward networks. Here we consider a Bayesian networkB = (V , E, k) with a particular DAG structure, known

as feed-forward structure: Given L non-empty, finite, and disjoint sets V1, . . . , VL (layers), we consider a node set V and an
edge set E satisfying

V =
L⋃
i=1

Vi, E ⊆
L−1⋃
i=1

(Vi × Vi+1).

Furthermore, let A ⊆ Vi and B ⊆ Vj be two non-empty sets with i < j. Then:

an(B) ∩ Vi ⊆ A ⇒ (14). (16)

In the networks (a)–(d) of Fig. 4, A is given by the lower subset and B is given by the upper subset. The subsets A and B of the
feed-forward networks shown in Fig. 4 relate to various information-theoretic studies within theoretical neuroscience. In
these studies, themaximization of a corresponding information-theoretic quantity, often causally interpreted as information
flow, has been considered as a first principle of learning and could provide explanation for experimental findings [11,16,4,
5,1,13]. On the other hand, it is clear that these studies are restricted to very special cases and extensions to more general
situations including information flows in recurrent networks require a careful consideration of causality.
(4) Trees. Let B = (V , E, k) be a Bayesian network where G = (V , E) is a tree, which means that there are no cycles in

the undirected version of G (see Fig. 5). If v,w ∈ V are two distinct nodes that satisfy v ; w, the connecting path is unique.
This implies (14). ?
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5. Stochastic dependence and information flows

5.1. Local information flows

According to Eq. (15) one can interpret themutual information ofXpa(v) andXv causally as information flow. Given distinct
nodes v1, . . . , vn in V , Eq. (15) can also be used to relate more general stochastic dependence of these nodes to causal
information flows. In order to derive such a relationship, we consider the so-called multi-information of (discrete) random
variables X1, . . . , Xn with joint distribution p:

Ip(X1, . . . , Xn) :=
∑
x1,...,xn

p(x1, . . . , xn) log2

(
p(x1, . . . , xn)
p(x1), . . . , p(xn)

)

=

n∑
i=1

Hp(Xi)− Hp(X1, . . . , Xn).

This is an extension of the mutual information to the case of more than two random variables. Now we want to address
the following problem: Given the stochastic dependence of nodes {v1, . . . , vn} ⊆ V , which is measured by the multi-
information of Xv1 , . . . , Xvn , can we say anything about the required causal information flows in the system that lead to that
stochastic dependence? In order to illustrate how this can be done, we consider the instructive special case of an ancestral
set A ⊆ V of a Bayesian network B = (V , E, k). We choose a numbering vi, i ∈ {1, . . . , n}, n = |A|, of the nodes in A that
satisfies

vi ∈ pa(vj) ⇒ i < j. (17)

Note that such a numbering always exists in an ancestral set. With the chain rule for the entropy we obtain

I(Xv1 , . . . , Xvn) =
n∑
i=1

H(Xvi)− H(Xv1 , . . . , Xvn)

=

n∑
i=1

H(Xvi)−
n∑
i=1

H(Xvi |Xv1 , . . . , Xvi−1) (entropy chain rule)

=

n∑
i=1

H(Xvi)−
n∑
i=1

H(Xvi |Xpa(vi))

(conditional independence of Xvi and Xv1 , . . . , Xvi−1 given Xpa(vi))

=

n∑
i=1

I(Xpa(vi) : Xvi).

According to (15), this is equivalent to

I(Xv1 , . . . , Xvn) =
n∑
i=1

F(Xpa(vi) → Xvi). (18)

Note that this result is valid for any numbering of the nodes in A and does not depend on the particular one that we have
chosen. Only the existence of a numbering that satisfies (17) is required, which is guaranteed by the assumption that A is an
ancestral set.
Eq. (14), with its corresponding Examples 2, and Eq. (18) show how stochastic dependence can be expressed in terms of

causal information flows. Butwe have to keep inmind that these equalities are based on some knowledge about the network
structure. For instance, in order to obtain (18) we assumed that the set A = {v1, . . . , vn} is an ancestral set. But how can we
relate the stochastic dependence of the nodes in A to causal information flows if we do not assume A to be ancestral? It is
somewhat surprising that we can skip this assumption and are still able to identify the stochastic dependence at least as a
lower bound for the total information flow. This is the message of the following theorem.

Theorem 3. Let B = (V , E, k) be a Bayesian network, and let v1, . . . , vn be distinct elements of V . Then

I(Xv1 , . . . , Xvn) ≤ max
j∈{1,...,n}

n∑
i=1
i6=j

F(Xpa(vi) → Xvi) ≤
n∑
i=1

F(Xpa(vi) → Xvi). (19)

Intuitively, this theorem states that, in order to generate a particular value of stochastic dependence in A = {v1, . . . , vn},
the sum of local information flows within and into A has to exceed that value.
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Fig. 6.

Example 3. Consider the units V = {v0, v1, . . . , vn} with state sets {0, 1}. Assume that the unit v0 randomly generates a
state Xv0 and transmits it without any modification to all other units. Thus, Xv = Xv0 (almost surely) for all v. The DAG is
given by the edge set E = {v0} × {v1, . . . , vn} (see Fig. 6). Now consider the subset A = {v1, . . . , vn}. There are no direct
causal effects within A. Nevertheless, in this example, the stochastic dependence of the variables Xv , v ∈ A, gives a good
estimate of the total causal information flow in the network:

n∑
i=1

F(Xpa(vi) → Xvi) = nH(Xv0)

≥ (n− 1)H(Xv0)

= max
j∈{1,...,n}

n∑
i=1
i6=j

F(Xpa(vi) → Xvi)

= I(Xv1 , . . . , Xvn). ?

5.2. Information flows from common causes

Now we come back to Reichenbach’s common cause principle and its quantitative extension. Theorem 3 is not directly
applicable to this end, because it relates stochastic dependence only to local information flows, whereas flows from common
causes, for instance, are in general non-local and originating from farther regions of the network. On the other hand,
Theorem 3 can be applied to a kind of ‘‘coarse-grained’’ Bayesian network explicitly defined in the proof of Theorem 4 (see
the Appendix), in order to obtain a quantitative refinement of the common cause principle in terms of information flows.
This refinement is the content of Theorem 4 and its Corollary 1. The formulation of these results requires some definitions
which I introduce, for didactical reasons, in three steps.
Step 1: Given a Bayesian networkB = (V , E, k) and distinct nodes v1, . . . , vn ∈ V , consider the map

ϕ : V → 2{1,...,n}, v 7→ ϕ(v) :=
{
j ∈ {1, . . . , n} : v ; vj

}
, (20)

where 2{1,...,n} denotes the power set of {1, . . . , n}. The ϕ-preimage of an element S ∈ 2{1,...,n}, which we denote by αS ,
coincides with the set of nodes v ∈ V that satisfy v ; vi if and only if i ∈ S, that is

αS =

(⋂
i∈S

an(vi)

)
∩

( ⋂
i∈{1,...,n}\S

(V \ an(vi))

)
. (21)

We consider the set V := {S ⊆ {1, . . . , n} : αS 6= ∅}. Note that the cardinality of V is upper bounded by the cardinality of
V . The αS , S ∈ V , are the atoms of a partition of V , and we have

an(vi) =
⋃
S∈V
S⊇ϕ(vi)

αS . (22)

Step 2: Based on the decomposition (22) of the ancestral set an(vi) into atoms we consider the following bipartition into a
pair of disjoint sets:

Ai :=
⋃
S∈V
S)ϕ(vi)

αS and Bi := αϕ(vi) = an(vi) \ Ai. (23)
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Fig. 7.

In other words, the set Bi is defined to be the atom that contains vi, and Ai is the complement of Bi in an(vi). Obviously,

vi ∈ Bj ⇔ i = j. (24)

Otherwise one would have the contradiction that two distinct nodes vi and vj satisfy vi ; vj and vj ; vi. We will see in the
Appendix that Ai has the following explicit representation which directly implies that Ai is an ancestral set:

Ai =
{
v ∈ V : v ; vi and there exists j 6= i satisfying vi 6; vj and v ; vj

}
. (25)

Note that in the case of vi 6; vj for all i 6= j the individual intersections Ai ∩ Aj, i 6= j, consist of the common causes of vi and
vj. This interesting special case is considered in Corollary 1.
Step 3: Theorem 4 provides an upper bound of the multi-information in terms of information flows from the Ai’s to the Bi’s.
These flow values do not change if we replace the cause and effect sets by smaller sets ∂−i and ∂

+

i at the ‘‘boundary’’ between
Ai and Bi as illustrated in Fig. 7. In order to define the sets ∂−i and ∂

+

i , we need the notion of the so-calledMarkov blanket of
a node v (see [7], page 71). It consists of the parents, the children, and the children’s parents of v:

bl(v) := pa(v) ∪ ch(v) ∪ {w ∈ V : ch(w) ∩ ch(v) 6= ∅} .

A Markov blanket of a set A is defined as

bl(A) :=
⋃
v∈A

(bl(v) \ A) .

We apply this definition to the sets Ai and Bi with respect to the subgraph Gai induced by the ancestral set ai := an(vi), that
is Gai = (ai, E ∩ (ai × ai)):

∂−i := bl(Bi) and ∂+i := bl(Ai). (26)

The fact that Ai is an ancestral set implies that there is no edge starting in Bi and ending in Ai. Therefore we have

∂−i = {v ∈ Ai : ch(v) ∩ Bi 6= ∅} and (27)

∂+i = {w ∈ Bi : pa(w) ∩ Ai 6= ∅, or there exists v ∈ Ai with ch(v) ∩ ch(w) 6= ∅}. (28)

In order to have a better intuitive understanding of Steps 1–3, we apply the corresponding definitions to the following
simple and very special example.

Example 4. Consider the nodes v1 = 8, v2 = 11, and v3 = 14 of the tree in Fig. 8. The subtree that is emphasized in Fig. 8
by solid lines and dots, is given by the ancestral node set an({8, 11, 14}), which is the union of

an(8) = {1, 2, 4, 8}, an(11) = {1, 2, 5, 11}, and an(14) = {1, 3, 7, 14}.

These ancestral sets generate a partition of the node set consisting of the following atoms (see representation (21)):

α∅ = {6, 9, 10, 12, 13, 15}, α{1,2} = {2}, α{1,2,3} = {1},
α{1} = {4, 8}, α{2} = {5, 11}, α{3} = {3, 7, 14}.

Nowwe divide each ancestral set an(vi) into a disjoint cause–effect pair Ai and Bi. The effect set Bi is given by the atom that
contains vi, and the cause set Ai is simply the complement of Bi in the ancestral set of vi. From Fig. 8 we can easily read off

A1 = {1, 2}, B1 = {4, 8}, A2 = {1, 2}, B2 = {5, 11}, and A3 = {1}, B3 = {3, 7, 14}.



2450 N. Ay / Discrete Applied Mathematics 157 (2009) 2439–2457

Fig. 8.

Replacing each Ai by the smaller cause set ∂−i ⊆ Ai and each Bi by the smaller effect set ∂
+

i ⊆ Bi (see Eqs. (27) and (28)) we
obtain

∂−1 = {2}, ∂
+

1 = {4}, ∂−2 = {2}, ∂
+

2 = {5}, and ∂−3 = {1}, ∂
+

3 = {3}. ?

We are now ready for the quantitative refinement of the common cause principle in terms of information flows.

Theorem 4. Let B = (V , E, k) be a Bayesian network, and let v1, . . . , vn be distinct elements of V . Then for all i we have

F(XAi → XBi) = I(XAi : XBi) = I(X∂−i : X∂+i ) = F(X∂−i → X∂+i ), (29)

and the following inequalities hold:

I(Xv1 , . . . , Xvn) ≤ I(XB1 , . . . , XBn) (30)

≤ max
j∈{1,...,n}

n∑
i=1
i6=j

F(XAi → XBi) ≤
n∑
i=1

F(XAi → XBi). (31)

Note that the left-hand side of (30) is a function of the (observed) joint distribution and does not explicitly depend on
the network structure, whereas the computation of the individual information flow terms of both sums of (31) does require
explicit knowledge about the network structure.
In the case where the observed nodes v1, . . . , vn do not influence each other, that is vi 6; vj for all i 6= j, one has

Ai =
{
v ∈ V : v ; vi and there exists j 6= i satisfying v ; vj

}
=

⋃
j6=i

(Ai ∩ Aj).

Here, as stated directly after Eq. (25), the intersections Ai ∩ Aj, i 6= j, consist of the common causes of vi and vj. Therefore, in
this case, the application of Theorem 4 provides an upper bound of the multi-information of the observed nodes in terms of
information flows from their common causes.

Corollary 1. If, in the situation of Theorem 4, vi 6; vj holds for all i 6= j, then

F(XAi → Xvi) = I(XAi : Xvi) = I(X∂−i : Xvi) = F(X∂−i → Xvi), (32)

and

I(Xv1 , . . . , Xvn) ≤ max
j∈{1,...,n}

n∑
i=1
i6=j

F(XAi → Xvi) ≤
n∑
i=1

F(XAi → Xvi). (33)

Obviously, in the situation of Corollary 1, the inequalities (33) are sharper than the corresponding inequalities (31). On
the other hand, it is important to keep in mind that, in contrast to the situation of Theorem 4, not only the individual
information flow terms of the inequalities (33) but even the applicability of these inequalities requires some knowledge
about the network structure, namely that vi 6; vj for all i 6= j. In other words, if we do not know anything about the
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Fig. 9.

Fig. 10.

underlying network we cannot say whether (33) is true, whereas the validity of (31) is guaranteed without structural
knowledge although the computation of the individual information flow terms does require such knowledge. This constitutes
the conceptual difference between Theorem 4 and Corollary 1.

Examples 5. (1) Data processing inequality. Consider the the simple DAG shown in Fig. 9. If we observe the first node v1 = 1
and third node v2 = 3, we have

A1 = ∅, B1 = {1}, ∂−1 = ∅, ∂
+

1 = ∅,

A2 = {1}, B2 = {2, 3}, ∂−2 = {1}, ∂
+

2 = {2}.

Then (29) and (31) imply the inequality

I(X1 : X3) ≤ F(X1 → X2) = I(X1 : X2).

This is well known as data processing inequality (Theorem 2.8.1 of [6]).
(2) Example 4 continued. Here we continue Example 4 by applying Theorem 4. The second inequality of (31) implies

I(X8, X11, X14) ≤ F(X{1,2} → X{4,8})+ F(X{1,2} → X{5,11})+ F(X1 → X{3,7,14}). (34)

According to (29), we can remove some of the cause and effect nodes without changing the information flows on the right-
hand side of (34):

I(X8, X11, X14) ≤ F(X2 → X4)+ F(X2 → X5)+ F(X1 → X3). (35)

The additional structural knowledge that there are no edges between the nodes 8, 11, and 14, allows us to apply Corollary 1
and thereby further sharpen the upper bound of the multi-information:

I(X8, X11, X14) ≤ F(X2 → X8)+ F(X2 → X11)+ F(X1 → X14). (36)

This is a refinement of the estimate (35).
(3)More ‘‘entangled’’ causal relations. This example illustrates how Theorem 4works in situations where the causal relations
of the nodes aremore ‘‘entangled’’ than those of the tree in Example 4. Consider theDAG shown in Fig. 10.We assume thatwe
observe v1 = 3, v2 = 9, v3 = 11, and v4 = 18 (these nodes are emphasized by bigger dots). The corresponding ancestral sets
an(vi), i = 1, 2, 3, 4, are encircled by individual closed lines. From Fig. 10we can directly read off the individual cause–effect
sets of Theorem 4:

A1 = {1}, B1 = {3}, ∂−1 = {1}, ∂
+

1 = {3},

A2 = {1, 2, 3, 4, 5, 7}, B2 = {8, 9}, ∂−2 = {4, 5, 7}, ∂
+

2 = {8, 9},

A3 = {1, 2, 3, 4, 10}, B3 = {6, 11}, ∂−3 = {3, 4, 10}, ∂
+

3 = {6, 11},

A4 = {1, 2, 5, 7, 10}, B4 = {12, 13, 14, 15, 16, 17, 18}, ∂−4 = {7, 10}, ∂
+

4 = {12, 13, 14}.
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Using the reduced sets ∂−i and ∂
+

i , Theorem 4 implies

I(X3, X9, X11, X18) ≤ F(X1 → X3)+ F(X{4,5,7} → X{8,9})
+ F(X{3,4,10} → X{6,11})+ F(X{7,10} → X{12,13,14}). ?

In Section 3 we have seen that the inequality (12) implies the common cause principle (Theorem 1). As a concluding
remark I apply the first estimate of (31) to two nodes v1 and v2 and thereby identify it as a refinement of (12) in the case
where A and B have cardinality one. With a := an(v1) and b := an(v2) there are three qualitatively different cases that
determine the sets Ai and Bi used in Theorem 4:

A1 A2 B1 B2
Case 1: v1 ∈ a \ b, v2 ∈ b \ a a∩b a∩b a \ b b \ a
Case 2: v1 ∈ a \ b, v2 ∈ a ∩ b a∩b ∅ a \ b a∩b
Case 3: v1 ∈ a ∩ b, v2 ∈ b \ a ∅ a∩b a∩b b \ a

Straightforward application of Theorem 4 gives us the following inequality (37):

I(Xv1 : Xv2) ≤

max
{
F(Xa∩b → Xa\b), F(Xa∩b → Xb\a)

}
in case 1

F(Xa∩b → Xa\b) in case 2
F(Xa∩b → Xb\a) in case 3

(37)

≤ max
{
F(Xa∩b → Xa\b), F(Xa∩b → Xb\a)

}
(38)

= max
{
I(Xa∩b : Xa\b), I(Xa∩b : Xb\a)

}
(Examples 2 (2))

≤ H(Xa∩b)

≤

∑
v∈a∩b

log2 |Xv|.

As we see, (37) and (38) are refinements of the previous estimate (12) in the case where A and B are sets of size one. In
particular, they also imply the common cause principle of Theorem 1 in that case.
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Appendix

A.1. Structural equation model and intervention

In Section 2.2 we used Bayesian networks as a formal description of causal interactions. Although it turns out that this is
a sufficient model for understanding causal effects, for some scientists, including Pearl, it appears more intuitive to assume
a deterministic nature of functional mechanisms. Following Pearl, the mechanisms of the nodes v ∈ V are described by
distributions (disturbances) dv on setsUv , and deterministic maps fv : Xpa(v) ×Uv → Xv . The corresponding equations

xv = fv(xpa(v), uv), v ∈ V , (39)

are called structural equations [18,9,8]. The disturbances are assumed to bemutually independent. ADAGG = (V , E) together
with a family of disturbances dv and maps fv , v ∈ V , is called a causal model. A causal model C defines the following joint
distribution onXV ×UV :

p(C; x, u) =
∏
v∈V

dv(uv) δfv(xpa(v),uv)(xv), x ∈ XV , u ∈ UV . (40)

If we take the marginal of that distribution, we obtain a distribution onXV :

p(C; x) =
∑
u

p(C; x, u)

=

∑
u

∏
v∈V

dv(uv) δfv(xpa(v),uv)(xv)
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=

∏
v∈V

(∑
uv

dv(uv) δfv(xpa(v),uv)(xv)

)
=

∏
v∈V

kv(xpa(v); xv),

with

kv(xpa(v); xv) :=
∑
uv

dv(uv) δfv(xpa(v),uv)(xv).

These are exactly the kernels that we already considered in Bayesian networks.
In order to describe interventions in a causal model we split the node set V into a subset A of nodes that are intervened

and the subset D := V \ A of remaining nodes which are observed. Let x′A be a configuration on A. Setting XA to x
′

A means
replacing all mechanisms fv , v ∈ A, by constants. Then we have to replace the structural equation (39) as follows:

xv = fv(xpa(v)\A, x′pa(v)∩A, uv), v ∈ V \ A,

xv = x′A, v ∈ A.

This gives the new causal model Ĉ where the maps fv are replaced by the new maps f̂v :≡ x′v if v ∈ A, and f̂v := fv if v 6∈ A.
This new causal model defines the following joint distribution which is a modification of (40):

p(̂C; x, u) :=
∏
v∈A

dv(uv) δx′v (xv)
∏
v∈V\A

dv(uv) δfv(xpa(v)\A,x′pa(v)∩A,uv)(xv).

This implies

p(̂C; xA, xD) =
∑
u

p(̂C; xA, xD, u)

=

∑
u

∏
v∈A

dv(uv) δx′v (xv)
∏
v∈V\A

dv(uv) δfv(xpa(v)\A,x′pa(v)∩A,uv)(xv)

=

(∏
v∈A

∑
uv

dv(uv) δx′v (xv)

)
·

( ∏
v∈V\A

∑
uv

dv(uv) δfv(xpa(v)\A,x′pa(v)∩A,uv)(xv)

)
= δx′A

(xA)
∏
v∈V\A

kv(xpa(v)\A, x′pa(v)∩A; xv).

Summation over all xA ∈ XA finally gives us

p(xD ‖ x′A) :=
∑
xA

p(̂C; xA, xD)

=

∏
v∈D

kv(xpa(v)\A, x′pa(v)∩A; xv).

We can rewrite this in the more transparent way by considering one global configuration x = (xD, xA) instead of (xD, x′A):

p(xD ‖ xA) =
∏
v∈D

kv(xpa(v); xv). (41)

This is exactly the truncated product (7).

A.2. Proofs

Proof of Theorem 2. We use the symbols

C := an(A) and D := V \ C .

The assumption that B is not a cause of A implies C ∩ B = ∅, and therefore B ⊆ D. We prove the theorem in several steps.
Step 1: For the ancestral set C we have

p(xC ) =
∏
v∈C

kv(xpa(v); xv).
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If p(xC ) > 0 we get

p(xB ‖ xC ) =
∑
xD\B

p(xB, xD\B ‖ xC )

=

∑
xD\B

∏
v∈D

kv(xpa(v); xv)

=

∑
xD\B

∏
v∈V
kv(xpa(v); xv)∏

v∈C
kv(xpa(v); xv)

=

∑
xD\B

p(xB, xD\B, xC )
p(xC )

=

∑
xD\B

p(xB, xD\B|xC )

= p(xB|xC ).

Step 2: Within this step we are going to prove

p(xB ‖ xC ) = p(xB ‖ xA, xC\A) = p(xB ‖ xA).

In order to do so, we define

A′ := {v ∈ V : there is a path from C \ A to v that does not meet A} , B′ := V \ A′.

Clearly we have C \ A ⊆ A′ and A ⊆ B′. Furthermore, the assumption that there is no common cause of A and B also implies
B ⊆ B′.

p(xB ‖ xC\A, xA) =
∑
xD\B

p(xB, xD\B ‖ xC\A, xA)

=

∑
xD\B

∏
v∈D

kv(xpa(v); xv)

=

∑
xA′\C

∑
xB′\(A∪B)

∏
v∈A′\C

kv(xpa(v); xv)
∏
v∈B′\A

kv(xpa(v); xv)

=

∑
xB′\(A∪B)

∏
v∈B′\A

kv(xpa(v); xv)
∑
xA′\C

∏
v∈A′\C

kv(xpa(v); xv)

=

∑
xB′\(A∪B)

∏
v∈B′\A

kv(xpa(v); xv)
∑
xA′

∏
v∈A′
kv(xpa(v); xv)

=

∑
xA′

∑
xB′\(A∪B)

∏
v∈B′\A

kv(xpa(v); xv)
∏
v∈A′
kv(xpa(v); xv)

=

∑
xA′

∑
xB′\(A∪B)

p(xA′ , xB′\(B∪A), xB ‖ xA)

= p(xB ‖ xA).

Step 3: Finally,

p(xB|xA) =
∑
xC\A

p(xB|xA, xC\A) p(xC\A|xA)

=

∑
xC\A

p(xB ‖ xA, xC\A) p(xC\A|xA) (Step 1)

=

∑
xC\A

p(xB ‖ xA) p(xC\A|xA) (Step 2)

= p(xB ‖ xA).

This proves the first part of the statement. In the last step we prove the optimality statement.
Step 4: If B is a cause of A or there is a common cause of A and B, then there is a node v 6∈ A and paths γ , γ ′ satisfying

v
γ
; A and v γ ′

; B. A Bayesian network B′ = (V , E, k′) with the required properties can be obtained as follows: Consider
binary state spaces of the nodes and define local kernels in such a way that all nodes that are not on these paths choose
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randomly their state without reference to their parents and with probability 12 . The nodes on the paths simply copy the
state of v along the edges of the paths. These particular definitions ensure the existence of xA, p(xA) > 0, and xB satisfying
p(xB ‖ xA) 6= p(xB|xA). �

Proof of Theorem 3. We choose a numbering {v1, . . . , vn} of an(A) satisfying

vi ∈ pa(vj) ⇒ i < j

and define J := {i ∈ {1, . . . , n} : vi ∈ A}. With k := |A| we consider the map {1, . . . , k} → J , l 7→ il, that satisfies
1 ≤ i1 < i2 < · · · < ik ≤ n. For all j ∈ {1, . . . , k} this implies {i1, . . . , ij−1} ⊆ {1, . . . , ij − 1}, and the Markov property
gives us the following estimate:

H(XA)−
∑
v∈A

H(Xv|Xpa(v)) =
k∑
j=1

H(Xvij |Xvi1 , . . . , Xvij−1 )−
k∑
j=1

H(Xvij |Xpa(vij ))

(conditional independence)

=

k∑
j=1

H(Xvij |Xvi1 , . . . , Xvij−1 )−
k∑
j=1

H(Xvij |Xv1 , Xv2 , . . . , Xvij−1)

≥ F(Xpa(vi1 ) → Xvi1 )

≥ min
v∈A

F(Xpa(v) → Xv).

This finally implies

I(Xvi1 , . . . , Xvik ) =
∑
v∈A

F(Xpa(v) → Xv)− H(XA)+
∑
v∈A

H(Xv|Xpa(v))

≤

∑
v∈A

F(Xpa(v) → Xv)−min
v∈A

F(Xpa(v) → Xv). �

Proof of Eq. (25). We introduce a new symbol

Ãi := {v ∈ V : v ; vi and there exists j 6= i satisfying vi 6; vj and v ; vj}

for the right-hand side of (25) and have to prove (see the first definition of (23))⋃
S∈V
S)ϕ(vi)

αS = Ãi.

‘‘⊆’’: We assume that there is an R ∈ V with R ) ϕ(vi) and v ∈ αR. From i ∈ ϕ(vi)we get i ∈ R, and, furthermore, there is a
j ∈ R \ ϕ(vi). This directly implies v ; vi, vi 6; vj, and v ; vj.
‘‘⊇’’: Assume v ∈ Ãi. It is sufficient to verify ϕ(v) ) ϕ(vi): k ∈ ϕ(vi) implies vi ; vk and, with v ; vi (v ∈ Ãi), this implies
v ; vk. Therefore, we have k ∈ ϕ(v). Now we choose a j with vi 6; vj and v ; vj (such a j exists because v ∈ Ãi). This is
equivalent to j ∈ ϕ(v) and j 6∈ ϕ(vi). �

Proof of Theorem 4. Proof of equality chain (29):
It is easy to verify that XBi is conditionally independent of XAi\∂−i given X∂−i , and that XBi\∂+i is conditionally independent

of XAi given X∂+i (graph separation criteria for conditional independence, see Section 3.2.2 of [12], or Section 5.3 of [7]):

XBiy XAi\∂−i |X∂−i and XBi\∂+i y XAi |X∂+i . (42)

This implies

F(XAi → XBi) = I(XAi : XBi) (Examples 2(2))
= H(XBi)− H(XBi |X∂−i , XAi\∂−i )

= H(XBi)− H(XBi |X∂−i ) (first conditional independence of (42))

= H(X∂−i )− H(X∂−i |X∂+i , XBi\∂+i ) (symmetry of mutual information)

= H(X∂−i )− H(X∂−i |X∂+i ) (second conditional independence of (42))

= I(X∂−i : X∂+i )

= F(X∂−i → X∂+i ) (Theorem 2).
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Proof of the inequalities (30) and (31):
The inequality (30) directly follows from vi ∈ Bi for all i. We are going to prove the inequality (31) in several steps. Based

on the given Bayesian network, we define a new one by ‘‘coarse-graining’’ and then apply Theorem 3.
Step 1: We consider the set V = {S ⊆ {1, . . . , n} : αS 6= ∅} as the node set of a new graph G = (V, E ′) where two nodes
R, S ∈ V are connected if there exist v ∈ αR andw ∈ αS with (v,w) ∈ E, that is

E ′ := {(R, S) ∈ V × V : there is a pair (v,w) ∈ E with v ∈ αR andw ∈ αS}.

This graph is acyclic because (R, S) ∈ E ′ always implies S ( R: Assume that there exists i ∈ S \ R. With (R, S) ∈ E there
are nodes v ∈ αR, w ∈ αS with (v,w) ∈ E. According to the definition of the sets αR and αS these nodes satisfy v 6; vi and
w ; vi. On the other hand, (v,w) ∈ E then implies the contradiction v ; vi.
In order to avoid technicalities, we modify the graph (V, E ′) by adding all pairs (R, S) ∈ V ×V to the edge set E ′ if they

satisfy R ) S. This way, we obtain a graph with extended edge set E satisfying pa(S) = {R ∈ V : R ) S} for all S ∈ V .
Step 2: For all nodes S ∈ V we consider the state set

XS := XαS = ×v∈αS Xv

by using the original state setsXv , v ∈ V . We have the natural identification

XV → XV, x = (xv)v∈V 7→ x̃ := (xαS )S∈V,

and every probability distribution p on XV can naturally be considered as probability distribution p̃ on XV defined by
p̃(̃x) := p(x). Given a recursive factorization

p(x) =
∏
v∈V

kv(xpa(v); xv),

we define new kernels kS as ‘‘groups’’ of the kernels kv:

kS (̃xpa(S); x̃S) :=
∏
v∈αS

kv(xpa(v); xv). (43)

This obviously provides a recursive factorization of p̃ according to the new graph (V, E):

p̃(̃x) = p(x) =
∏
v∈V

kv(xpa(v); xv) =
∏
S∈V

(∏
v∈αS

kv(xpa(v); xv)

)
=

∏
S∈V

kS (̃xpa(S); x̃S).

This graph (V, E), together with the kernels kS , defines a Bayesian network which we denote by B̃.
Step 3: Finally we apply Theorem 3 to the Bayesian network B̃ in order to obtain (31):

Ip(Xv1 , . . . , Xvn) ≤ Ip(XB1 , . . . , XBn) (inequality (30))
= Ĩp(Xϕ(v1), . . . , Xϕ(vn)) (Step 2 and Bi = αϕ(vi))

≤ max
j∈{1,...,n}

n∑
i=1
i6=j

FB̃(Xpa(ϕ(vi)) → Xϕ(vi)) (Theorem 3)

= max
j∈{1,...,n}

n∑
i=1
i6=j

FB(XAi → XBi) (Steps 1 and 2). �

Proof of Corollary 1. The equality chain (32) follows directly from the fact that Ai is an ancestral set (see Examples 2 (2)),
and from the conditional independence of Xvi and XAi\∂−i given X∂−i which is stated in (42). In order to prove the inequality
(33) we slightly modify the Bayesian networkB = (V , E, k) and then apply the corresponding inequality (31).
Step 1: With A :=

⋃n
i=1 Ai we define a new graph Ḡ := (V̄ , Ē) by

V̄ := A ∪ {v1, . . . , vn}, Ē := (E ∩ (A× A)) ∪
n⋃
i=1

(
∂−i × {vi}

)
.

Obviously, the parents of a node vi with respect to this graph Ḡ are given by the set ∂−i . Denoting the Ai’s and Bi’s that are
defined with respect to Ḡ by Āi and B̄i we have

Āi = Ai and B̄i = {vi}. (44)
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Step 2: In order to define the new Bayesian network B̄, we assign to each node vi, i = 1, . . . , n, a kernel k̄vi fromX∂−i
toXvi

given by

k̄vi(x∂−i ; xvi) :=
∑
xBi\{vi}

∏
v∈Bi

kv(xpa(v); xv).

The other kv ’s where v is an element of A remain unchanged. Obviously, the causal effects of the Ai’s on the vi’s remain the
same, and we have

FB̄(XAi → Xvi) = FB(XAi → Xvi). (45)

Furthermore, the assumption that vi 6; vj if i 6= j ensures that the joint probability distribution p(B̄) coincides with the
V̄ -marginal of p(B), that is

p(B̄; xV̄ ) =
∑
xV\V̄

p(B; xV̄ , xV\V̄ ). (46)

Step 3: Finally, we prove the inequality (33):

Ip(Xv1 , . . . , Xvn) = Ip̄(Xv1 , . . . , Xvn) (Eq. (46))

≤ max
j∈{1,...,n}

n∑
i=1
i6=j

FB̄(XĀi → XB̄i) (inequality (31) of Theorem 4)

= max
j∈{1,...,n}

n∑
i=1
i6=j

FB(XAi → Xvi). (Eqs. (44) and (45)). �
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