
Entropy 2015, 17, 2304-2327; doi:10.3390/e17042304
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Information-Theoretic Inference of Common Ancestors
Bastian Steudel 1 and Nihat Ay 1,2,3,*

1 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany;
E-Mail: bastian.steudel@gmx.net

2 Faculty of Mathematics and Computer Science, University of Leipzig, PF 100920, 04009 Leipzig,
Germany

3 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

* Author to whom correspondence should be addressed; E-Mail: nay@mis.mpg.de.

Academic Editor: Rick Quax

Received: 12 February 2015 / Accepted: 1 April 2015 / Published: 16 April 2015

Abstract: A directed acyclic graph (DAG) partially represents the conditional independence
structure among observations of a system if the local Markov condition holds, that is if
every variable is independent of its non-descendants given its parents. In general, there is
a whole class of DAGs that represents a given set of conditional independence relations.
We are interested in properties of this class that can be derived from observations of a
subsystem only. To this end, we prove an information-theoretic inequality that allows for the
inference of common ancestors of observed parts in any DAG representing some unknown
larger system. More explicitly, we show that a large amount of dependence in terms of
mutual information among the observations implies the existence of a common ancestor that
distributes this information. Within the causal interpretation of DAGs, our result can be seen
as a quantitative extension of Reichenbach’s principle of common cause to more than two
variables. Our conclusions are valid also for non-probabilistic observations, such as binary
strings, since we state the proof for an axiomatized notion of “mutual information” that
includes the stochastic as well as the algorithmic version.
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1. Introduction

Causal relations among components X1, . . . , Xn of a system are commonly modeled in terms of a
directed acyclic graph (DAG) in which there is an edge Xi → Xj whenever Xi is a direct cause of
Xj . Further, it is usually assumed that information about the causal structure can be obtained through
interventions in the system. However, there are situations in which interventions are not feasible (too
expensive, unethical or physically impossible) and one faces the problem of inferring causal relations
from observational data only. To this end, postulates linking observations to the underlying causal
structure have been employed, one of the most fundamental being the causal Markov condition [1,2].
It connects the underlying causal structure to conditional independencies among the observations.
Explicitly, it states that every observation is independent of its non-effects given its direct causes. It
formalizes the intuition that the only relevant components of a system for a given observation are its
direct causes.

In terms of DAGs, the causal Markov condition states that a DAG can only be a valid causal model of
a system if every node is independent of its non-descendants given its parents. The graph is then said to
fulfill the local Markov condition [3]. Consider for example the causal hypothesis X → Y ← Z on three
observations X, Y and Z. Assuming the causal Markov condition, the hypothesis implies that X and Z

are independent. The violation of this independence then allows one to exclude this causal hypothesis.
However, note that in general, there are many DAGs that fulfill the local Markov condition with respect
to a given set of conditional independence relations. For example, all three DAGs X → Y → Z,
X ← Y → Z and X ← Y ← Z encode that X is independent of Z given Y , and this cannot be decided
from information on conditional independences alone, which is the true causal model. Nevertheless,
properties that are shared by all valid DAGs (e.g., an edge between X and Y in the example) provide
information about the underlying causal structure.

The causal Markov condition is only expected to hold for a given set of observations if all relevant
components of a system have been observed, that is if there are no confounders (causes of at least two
observations that have not been measured). It can then be proven by assuming a functional model of
causality [1,4,5]. As an example, consider the observations X1, . . . , Xn to be jointly distributed random
variables. In this case, the causal Markov condition can be derived for a given DAG on X1, . . . , Xn

from two assumptions: (1) every variable Xi is a deterministic function of its parents and an independent
(possibly unobserved) noise variable Ni; and (2) the noise variables Ni are jointly independent. However,
in this paper, we assume that our observations provide only partial knowledge about a system and
ask for structural properties common to all DAGs that represent the independencies of some larger set
of elements.

To motivate our result, assume first that our observation consists of only two jointly-distributed
random variables X1 and X2, which are stochastically dependent. Reichenbach [6] postulated already in
1956 that the dependence of X1 and X2 needs to be explained by (at least) one of the following cases: X1

is a cause of X2, or X2 is a cause of X1, or there exists a common cause of X1 and X2. This link between
dependence and the underlying causal structure is known as Reichenbach’s principle of common cause.
It is easily seen that by assuming X1 and X2 to be part of some unknown larger system whose causal
structure is described by a DAG G, then the causal Markov condition for G implies the principle of
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common cause. Moreover, we can subsume all three cases of the principle if we formally allow a node
to be an ancestor of itself and arrive at:

The common cause principle: If two observations X1 and X2 are dependent, then they must have a
common ancestor in any DAG modeling some possibly larger system.

Our main result is an information-theoretic inequality that enables us to generalize this principle to
more than two variables. It leads to the:

Extended common cause principle (informal version): Consider n observations X1, . . . , Xn, and
a number c, 1 ≤ c ≤ n. If the dependence of the observations exceeds a bound that depends on c, then
in any DAG modeling some possibly larger system, there exist c nodes out of X1, . . . , Xn that have a
common ancestor.

Thus, structural information can be obtained by exploiting the degree of dependence on the subsystem,
and we would like to emphasize that, in contrast to the original common cause principle, the above
criterion provides a means to distinguish among cases with the same independence structure of the
observed variables. This is illustrated in Figure 1.

X1

X2

X3

X1

X2

X3

Figure 1. Two causal hypothesis for which the causal Markov condition does not imply
conditional independencies among the observations X1, X2 and X3. Thus, they cannot
be distinguished using qualitative criteria, like the common cause principle (unobserved
variables are indicated as dots). However, the model on the right can be excluded if the
dependence among the Xi exceeds a certain bound.

Above, the extended common cause principle is stated without making explicit the kind of
observations we consider and how dependence is quantified. In the main case we have in mind,
the observations are jointly-distributed random variables, and dependence is quantified by the mutual
information [7] function. Then the extended common cause principle (Theorem 2) relates stochastic
dependence to a property of all Bayesian networks that include the observations.

However, the result holds for more general observations (such as binary strings) and for more general
notions of mutual information (such as algorithmic mutual information [8]). Therefore, we introduce
an “axiomatized” version of mutual information in the following section and describe how it can be
connected to a DAG. Then, in Section 3, we prove a theorem on the decomposition of information about
subsets of a DAG out of which the extended common cause principle then follows as a corollary. Apart
from a larger area of applicability, we think that an abstract proof based on an axiomatized notion of
information better illustrates that the result is independent of the notion of “probability”. It only relies
on the basic properties of (stochastic) mutual information (see Definition 1). Finally, in Section 4, we
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describe the result in more detail within different contexts and relate it to the notion of redundancy and
synergy that was introduced in the area of neural information processing.

2. General Mutual Information and DAGs

Before introducing a general notion of mutual information, let us describe how it is connected to
a DAG in the stochastic setting. Assume we are given an observation of n discrete random variables
X1, . . . , Xn in terms of their joint probability distribution p(X1, . . . , Xn). Write [n] = {1, . . . , n}, and
for a subset S ⊆ [n], let XS be the random variable associated with the tuple (Xi)i∈S . Assume further
that a directed acyclic graph (DAG) G is associated with the nodes X1, . . . , Xn that fulfill the local
Markov condition [3]: for all i, (1 ≤ i ≤ n):

Xi ⊥⊥ Xndi | Xpai , (1)

where ndi and pai denote the subset of indices corresponding to the non-descendants and to the parents
of Xi in G. The tuple (G, p(X[n])) is called a Bayesian net [9] and the conditional independence relations
imply the factorization of the joint probability distribution

p(x1, . . . , xn) =
∏
i∈[n]

p(xi|xpai) ,

where small letters xi stand for values of the random variables Xi. From this factorization, it follows
that the joint information measured in terms of Shannon entropy [7] decomposes into a sum of individual
conditional entropies:

H(X1, . . . , Xn) =
n∑

i=1

H(Xi |Xpai) . (2)

Shannon entropy can be considered as the absolute measure of information. However, in many cases,
only a notion of information relative to another observation may be available. For example, in the
case of continuous random variables, Shannon entropy can be negative, and hence, may not be a good
measure of the information. Therefore, we would like formulate our results based on a relative measure,
such as mutual information, which, moreover, induces a notion of independence in a natural way. This
can be achieved by introducing a specially-designated variable Y relative to which information will be
quantified. The variable Y can, for example, be thought of as providing a noisy measurement of the
X[n] (Figure 2a). Then, with respect to a joint probability distribution p(Y,X[n]), we can transform the
decomposition of entropies into a decomposition of mutual information [7]:

I(Y : X[n]) ≥
n∑

i=1

I(Y : Xi |Xpai) . (3)

For a proof and a condition for equality, see Lemma 2 below. In the case of discrete variables, Shannon
entropy H(Xi) can be seen as mutual information of Xi and a copy of itself: H(Xi) = I(Xi : Xi).
Therefore, we can always choose p(Y |X[n]), such that Y = X[n] and the decomposition of entropies in
(2) is recovered. We are interested in decompositions as in (2) and (3), since their violation allows us to
exclude possible DAG structures.
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Figure 2. The graph in (a) shows a directed acyclic graph (DAG) on nodes X1, . . . , X5

whose observation is modeled by a leaf node Y (e.g., a noisy measurement). (b) A DAG
model of observed elements O1 = {X1} and O2 = {X4, X5}.

However, note that the above relations are not yet very useful, since they require, through the
assumption of the local Markov condition, that we have observed all relevant variables of a system.
Before we relax this assumption in the next section, we introduce mutual information measures on
general observations.

Definition 1 (Measure of mutual information). Given a finite set of elements O, a measure of mutual
information on O is a three-argument function on the power set:

I : 2O × 2O × 2O → R, (A,B,C)→ I(A : B |C)

such that, for disjoint sets A,B,C,D ⊆ O, it holds:

I(A : ∅) = 0 (normalization)

I(A : B |C) ≥ 0 (non-negativity)

I(A : B |C) = I(B : A |C) (symmetry)

I(A : (B ∪ C) |D) = I(A : B |C ∪D) + I(A : C |D) (chain rule).

We say A is independent of B given C and write (A ⊥⊥ B |C) iff I(A : B |C) = 0. Further, we will
generally omit the empty set as a third argument and substitute the union by a comma; hence, we write
I(A : B) instead of I(A : B |∅) and I(A : B,C) instead of I(A : B ∪ C).

Of course, mutual information of discrete, as well as of continuous random variables is included
in the above definition. Further, in Section 4.2, we will discuss a recently-developed theory of causal
inference [4] based on the algorithmic mutual information of binary strings [10]. We now state two
properties of mutual information that we need later on.

Lemma 1 (Properties of mutual information). Let I be a measure of mutual information on a set of
elements O. Then:

(i) (Data processing inequality) For three disjoint sets A,B,C ⊆ O:

I(A : C |B) = 0 =⇒ I(A : B) ≥ I(A : C) .
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(ii) (Increase through conditioning on independent sets)
For three disjoint sets A,B,C ⊆ O:

I(A : C |B) = 0 =⇒ I(Y : A |B) ≤ I(Y : A |B,C) , (4)

where Y is an arbitrary set Y ⊆ O disjoint from the rest. Further, the difference is given by
I(A : C |B, Y ).

Proof. (i) Using the chain rule two times:

I(A : B) = I(A : B) + I(A : C |B) = I(A : B,C)

= I(A : C) + I(A : B|C) ≥ I(A : C) ,

where the last inequality follows from the non-negativity of I . To prove (ii), we again use the chain rule:

I(Y : A |B)− I(Y : A |B,C) = I(Y : A |B)− I(Y,C : A |B) + I(A : C|B)

= −I(A : C |B, Y ) ≤ 0 .

As in the stochastic setting, we can connect a DAG to the conditional independence relation that
is induced by mutual information: we say that a DAG on a given set of observations fulfills the local
Markov condition if every node is independent of its non-descendants given its parents. Furthermore,
we show in Appendix A that the induced independence relations are sufficiently nice, in the sense that
they satisfy the semi-graphoid axioms [11]. This is useful because it implies that a DAG that fulfills the
local Markov condition is an efficient partial representation of the conditional independence structure.
Namely, conditional independence relations can be read off the graph with the help of a criterion called
d-separation [1] (see Appendix A for details).

We conclude with a general formulation of the decomposition of mutual information that we already
described in the probabilistic case.

Lemma 2 (Decomposition of mutual information). Let I be a measure of mutual information on
elements O[n] = {O1, . . . , On} and Y . Further, let G be a DAG with node set O[n] that fulfills the
local Markov condition. Then:

I(Y : O[n]) ≥
n∑

i=1

I(Y : Oi |Opai) (5)

with equality if conditioning on Y does preserve the independences of the local Markov condition: that
is, for all i:

Oi ⊥⊥ Ondi |(Opai , Y ) . (6)

Proof. Assume the Oi are ordered topologically with respect to G. The proof is by induction on n. The
lemma is trivially true if n = 1 with equality. Assume that it holds for k − 1 < n. It is easy to see that
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the graph Gk with nodes O[k] that is obtained from G by deleting all but the first k nodes fulfills the local
Markov condition with respect to O[k]. By the chain rule,

I(Y : O[k]) = I(Y : O[k−1]) + I(Y : Ok |O[k−1])

and we are left to show that I(Y : Ok |O[k−1]) ≥ I(Y : Ok |Opak). Since the local Markov condition
holds, we have Ok ⊥⊥ O[k−1]\pak |Opak , and the inequality follows by applying (4). Further, by Property
(ii) of the previous lemma, equality holds if for every k: Ok ⊥⊥ O[k−1]\pak | (Opak , Y ), which is implied
by (6).

In the next section, we derive a similar inequality in the case in which only the mutual information of
Y with a subset of the nodes O[n] is known.

3. Partial Information about a System

We have shown that the information about elements of a system described by a DAG decomposes if
the graph fulfills the local Markov condition. In this section, we derive a similar decomposition in cases
where not all elements of a system have been observed. This decomposition will of course depend on
specific properties of G and, in turn, enable us to exclude certain DAGs as models of the total system
whenever we observe a violation of such a decomposition.

More precisely, we are interested in properties of the class of DAG models of a set of observations
that we define as follows (see Figure 2b).

Definition 2 (DAG model of observations). An observation of elements O[n] = {O1, . . . , On} with
respect to a reference object Y and mutual information measure I is given by the values of I(Y : OS)

for every subset S ⊆ [n].
A DAG G with nodes X together with a measure of mutual information IG on X is a DAG model of

an observation, if the following holds:

(i) each observation Oi is a subset of the nodes X of G.
(ii) G fulfills the local Markov condition with respect to IG.

(iii) IG is an extension of I , that is IG(Y : OS) = I(Y : OS) for all S ⊆ [n].
(iv) Y is a leaf node (no descendants) of G .

The first three conditions state that, given the causal Markov condition, G is a valid hypothesis on the
causal relations among components of some larger system, including the O[n], that is consistent with the
observed mutual information values. Condition (iv) is merely a technical condition, due to the special
role of Y as an observation of the O[n] external to the system.

As an example, if the Oi and Y are random variables with joint distribution p(O[n], Y ), a DAG model
G with nodes X is given by the graph structure of a Bayesian net with joint distribution p(X ), such that
the marginal on O[n] and Y equals p(O[n], Y ). Moreover, if Y is a copy of O[n], then an observation in
our sense is given by the values of the Shannon entropy H(OS) for every subset S ⊆ [n].

The general question posed in this paper can then be formulated as follows: What can be learned from
an observation given by the values I(Y : OS) about the class of DAG models?

As a first step, we present a property of mutual information about independent elements.
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Lemma 3 (Submodularity of I). If the Oi are mutually independent, that is I(Oi : O[n]\i) = 0 for all i,
then the function [n] ⊇ S → −I(Y : OS) is submodular, that is, for two sets S, T ⊆ [n]:

I(Y : OS) + I(Y : OT ) ≤ I(Y : OS∪T ) + I(Y : OS∩T ) .

Proof. For two subsets S, T ⊆ [n], write S ′ = S\(S ∩ T ) and T ′ = T\(S ∩ T ). Using the chain rule
we, have:

I(Y : OS∪T ) + I(Y : OS∩T ) = I(Y : OS) + I(Y : OT ′ |OS) + I(Y : OS∩T )

≥ I(Y : OS) + I(Y : OT ′ |OS∩T ) + I(Y : OS∩T )

= I(Y : OS) + I(Y : OT ) ,

where the inequality follows from Property (4) of mutual information.

Hence, a violation of submodularity allows one to reject mutual independence among the Oi and
therefore to exclude the DAG that does not have any edges from the class of possible DAG models (the
local Markov condition would imply mutual independence).

We now broaden the applicability of the above Lemma based on a result for submodular functions
from [12]: We assume that there are unknown objects X = {X1, . . . , Xr} that are mutually independent
and that the observed elements Oi ⊆ X will be subsets of them (see Figure 3a).

(a)

Y

X1

X2

X8

X6

X4

X3

X5

X7

O2

O4

O1

O3

(b)

O1 O2

O3

O4

Y

Figure 3. (a) Four subsets O1, . . . , O4 of independent elements X1, . . . , X8 “observed by”
Y . Note that the intersection of three sets Oi is empty; hence, di ≤ 2 for all i = 1, . . . , 4

in Proposition 1 and, therefore, I(Y : O[4]) ≥ 1
2

∑4
i=1 I(Y : Oi). (b) A DAG model in

gray. The observed elements O1, . . . , O4 are subsets of its nodes. One can check that the
DAG does not imply any conditional independencies among the Oi (e.g., with the help of
the d-separation criterion; see Appendix A). Nevertheless, there is no common ancestor of
all four observations (∩4

i=1an(Oi) = ∅). Since Y only depends on the Oi, the inequality (10)
of Theorem 1 implies I(Y : O[4]) ≥ 1

3

∑4
i=1 I(Y : Oi).

In contrast to the previous lemma, it is not required anymore that the Oi are mutually independent
themselves. It turns out that the way the information about the Oi decomposes allows for the inference
of intersections among the sets Oi, namely:

Proposition 1 (Decomposition of information about sets of independent elements). Let X =

{X1, . . . , Xr} be mutually independent objects, that is I(Xj : X[r]\j) = 0 for all j. Let O[n] =

{O1, . . . , On}, where each Oi ⊆ X is a non-empty subset ofX . For every i ∈ [n], let di be maximal, such
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that Oi has non-empty intersection with di − 1 sets out of O[n] distinct from Oi. Then, the information
about the O[n] can be bounded from below by:

I(Y : O[n]) ≥
n∑

i=1

1

di
I(Y : Oi) . (7)

For an illustration, see Figure 3a. Even though the proposition is actually a corollary of the
following theorem, its proof is given in Appendix B, since it is, unlike the theorem, independent of
graph-theoretic notions.

As a trivial example, consider the case where O1 = O2 = O ⊆ X are identical subsets. Then,
d1 = d2 = 2 and:

I(Y : O) =
1

2
I(Y : O1) +

1

2
I(Y : O2) ,

hence equality holds in (7). In general, if there is an element in Oi that is also in k − 1 different sets
Oj , then di ≥ k, and we account for this redundancy in dividing the single information I(Y : Oi) by
at least k.

Independent elements can always be modeled as root nodes of a DAG. The following theorem, which
is our main result, generalizes the proposition by connecting the information about observations Oi to
the intersection structure of associated ancestral sets. For a given DAG G, a set of nodes A is called
ancestral, if for every edge v → w in G, such that w is in A, also v is in A. Further, for a subset of nodes
S, we denote by an(S) the smallest ancestral set that contains S. Elements of an(S) will be called
ancestors of S.

Theorem 1 (Decomposition of ancestral information). Let G be a DAG model of an observation of
elements O[n] = {O1, . . . , On}. For every i, let di be the maximal number, such that the intersection of
an(Oi) with di − 1 distinct sets an(Oi1), . . . , an(Oid−1

) is non-empty. Then, the information about all
ancestors of O[n] can be bounded from below by:

I(Y : an(O[n])) ≥
n∑

i=1

1

di
I(Y : an(Oi)) ≥

n∑
i=1

1

di
I(Y : Oi) . (8)

Furthermore, if Y only depends on whole system X through the O[n], that is:

Y ⊥⊥ X\(O[n] ∪ {Y }) |O[n] (9)

we obtain an inequality containing only known values of mutual information:

I(Y : O[n]) ≥
n∑

i=1

1

di
I(Y : Oi) . (10)

The proof is given in Appendix C, and an example is illustrated in Figure 3b. If all quantities
except the structural parameters di are known, the inequality (10) can be used to obtain information
about the intersection structure among the Oi that is encoded in the di, provided that the independence
assumption (9) holds. Even if (9) does not hold, but information on an upper bound of I(Y : an(O[n]))

is available (e.g., in terms of the entropy of Y ), information about the intersection structure may be
obtained from (8). The following corollary additionally provides a bound on the minimum information
about ancestral sets.
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Corollary 1 (Inference of common ancestors, local version). Given an observation of elements O[n] =

{O1, . . . , On}, assume that for natural numbers c = (c1, . . . , cn) with (1 ≤ ci ≤ n− 1), we observe:

ϵc :=
n∑

i=1

1

ci
I(Y : Oi)− I(Y : an(O[n])) > 0 . (11)

Let G be an arbitrary DAG model of the observation. For every Oi, let Aci+1 be the set of common
ancestors in G of Oi and at least ci elements of O[n] different from Oi. Then, the joint information about
all common ancestors can be bounded from below by:

I
(
Y : ∪n

i=1Aci+1

)
≥

( n∑
i=1

1

ci
− 1

)−1
ϵc > 0 .

In particular, for at least one index i ∈ [n], we must have Aci+1 ̸= ∅; hence, there exists a common
ancestor of Oi and at least ci elements of O[n] different from Oi.

The proof is given in Appendix D. Theorem 1 and its corollary are our most general results, but due
to the ease of interpretation, we illustrate them in the next section only in the special case in which all
ci are equal (Corollary 2) to obtain a lower bound on the information about all common ancestors of at
least c+ 1 elements Oi.

To conclude this section, we ask what is the maximum amount of information that one can expect
to obtain about the intersection structure of ancestral sets of a DAG model of observations. The main
requirement for a DAG model G is that it fulfills the local Markov condition with respect to some
larger set X of elements. This will remain true if we add nodes and arbitrary edges in a way that G
remains acyclic. Therefore, if G contains a common ancestor of c elements, we can always construct
a DAG model G′ that contains a common ancestor of more than c elements (e.g., the DAG model on
the right-hand side of Figure 1 can be transformed into the one on the left-hand side). We conclude
that without adding minimality requirements for the DAG models (such as the causal faithfulness
assumption [2]), only assertions on ancestors of a minimal number of nodes can be made.

4. Structural Implications of Redundancy and Synergy

The results of the last section can be related to the notions of redundancy and synergy. In the context
of neuronal information processing, it has been proposed to capture the redundancy and synergy of
elements O[n] = {O1, . . . , On} with respect to another element Y using the function:

r(Y ) :=
n∑

i=1

I(Y : Oi)− I(Y : O[n]) , (12)

where I is a measure of mutual information [13–15]. Thus, r relates information that Y has about the
single elements to information about the whole set.

If the sum of information about the single Oi is larger than the information about whole set
(r(Y ) > 0), the O[n] are said to be redundant with respect to Y . This may be the case if Y “contains”
information that is shared by multiple Oi. In general, if the Oi do not share any information, that is if
they are mutually independent, then they can not be redundant with respect to any Y (this follows from
Lemma 3).
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On the other hand, if the information of Y about the whole set of elements is larger than that about its
single elements (r(Y ) < 0), the O[n] are called synergistic with respect to Y . This may, for example, be
the case if Y is generated through a function Y = f(O1, . . . , On) and the function value contains little
information about each argument (as is the case for the parity function; see below). If, instead, Y is a
copy of the O[n], then r(Y ) ≥ 0, and thus, the O[n] are not synergistic with respect to Y .
To connect our results to the introduced notion of redundancy and synergy, we introduce the following
version of r parametrized by a parameter c ∈ {1, . . . , n}:

rc(Y ) :=
1

c

n∑
i=1

I(Y : Oi)− I(Y : O[n]) . (13)

Intuitively, if rc(Y ) > 0 for large c, then the Oi are highly redundant with respect to Y . Corollary 1
of the last section implies that high redundancy implies common ancestors of many Oi.

Corollary 2 (Redundancy explained structurally). Let an observation of elements O[n] = {O1, . . . , On}
be given by the values of I(Y : OS) for any subset S ⊆ [n]. If rc(Y ) > 0, then in any DAG model of the
observation in which Y only depends on X through O[n] [16], there exists a common ancestor of at least
c+ 1 elements of O[n].

In the following two subsections, we discuss this result in more detail for the cases in which the
observed elements are discrete random variables and binary strings.

4.1. Common Ancestors of Discrete Random Variables

Let X[n] = {X1, . . . , Xn} and Y be discrete random variables with joint distribution p(X[n], Y ), and
let I denote the usual measure of mutual information given by the Kullback–Leibler divergence of p from
its factorized distribution [7]. If Y = X[n] is a copy of the X[n], then I(Y : X[n]) = H(X[n]), where H

denotes the Shannon entropy. In this case, the redundancy r1(X[n]) is equal to the multi-information [17]
of the X[n]. Moreover, rc gives rise to a parametrized version of multi-information:

Ic(X1, . . . , Xn) :=
n∑

i=1

1

c
H(Xi)−H(X[n]) , (14)

and from Corollary 1, we obtain

Theorem 2 (Lower bound on entropy of common ancestors). Let X[n] be jointly-distributed discrete
random variables. If Ic(X[n]) > 0, then in any Bayesian net containing the X[n], there exists a common
ancestor of strictly more than c variables out of the X[n]. Moreover, the entropy of the set Ac+1 of all
common ancestors of more than c variables is lower bounded by:

H(Ac+1) ≥
c

n− c
Ic(X[n]) . (15)

We continue with a few remarks to illustrate the theorem:

(1) Setting c = 1, the theorem states that, up to a factor 1/(n − 1), the multi-information I1 is a
lower bound on the entropy of common ancestors of more than two variables. In particular, if
I1(X[n]) > 0, any Bayesian net containing the X[n] must have at least an edge.
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(2) Conversely, the entropy of common ancestors of all of the elements X1, . . . , Xn is lower bounded
by (n−1)In−1(X[n]). This bound is not trivial whenever In−1(X[n]) > 0, which is, for example, the
case if the Xi are only slightly disturbed copies of some not necessarily observed random variable
(see the example below).

(3) We emphasize that the inferred common ancestors can be among the elements Xi themselves.
Unobserved common ancestors can only be inferred by postulating assumptions on the causal
influences among the Xi. If, for example, all of the Xi were measured simultaneously, a direct
causal influence among the Xi can be excluded, and any dependence or redundancy has to be
attributed to unobserved common ancestors.

(4) Finally, note that Ic > 0 is only a sufficient, but not a necessary condition for the existence of
common ancestors. However, we know that the information-theoretic information provided by Ic

is used in the theorem in an optimal way. By this, we mean that we can construct distributions
p(X[n]), such that Ic(X[n]) = 0 for a given c, and no common ancestors of c+1 nodes have to exist.

We conclude this section with examples:

Example 1 (Three variables). Let X1, X2 and X3 be three binary variables. Then I2(X1, X2, X3) > 0 if
and only if

H(X1) +H(X2) +H(X3) > 2H(X1, X2, X3) .

In this case, there must exist a common ancestor of all three variables in any Bayesian net that contains
them. In particular, any Bayesian net corresponding to the DAG on the right-hand side of Figure 1 can
be excluded as a model.

Example 2 (Synchrony and interaction among random variables). Let X1 = X2 = · · · = Xn be identical
random variables with non-vanishing entropy h. Then, in particular, In−1(X[n]) = (n− 1)−1h > 0, and
we can conclude that there has to exist a common ancestor of all n nodes in any Bayesian net that
contains them.

Example 3 (Interaction of maximal order). In contrast to the synchronized case, let X1, X2, . . . , Xn

be binary random variables taking values in {−1, 1}, and assume that the joint distribution is of pure
n-interaction [18], that is for some β ̸= 0, it has the form

pβ(x1, . . . , xn) :=
1

Zβ

exp(βx1x2 · · · xn) ,

where Z is a normalization constant. It can be shown that there exists a Bayesian net including the
X[n], in which common ancestors of at most two variables exist. This is illustrated in Figure 4 for
three variables and in the limiting case β = ∞ in which each Xi is uniformly distributed and X1 =

X2 · X3. We found it somewhat surprising that, contrary to synchronization, higher order interaction
among observations does not require common ancestors of many variables.
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X1 =

U12U13

X2 =

U12U23

X3 =

U13U23

U12 U13

U23

Figure 4. The figure illustrates that higher order interaction among observed random
variables can be explained by a Bayesian net in which only common ancestors of two
variables exist. More precisely, all random variables are assumed to be binary with values in
{−1, 1}, and the unobserved common ancestors Uij are mutually independent and uniformly
distributed. Further, the value of each observation Xi is obtained bythe product of the values
of its two ancestors. Then, the resulting marginal distribution p(X1, X2, X3) is of higher
order interaction: it is related to the parity function p(X1 = x1, X2 = x2, X3 = x3) =

1
4

if
x1x2x3 = 1, and zero otherwise.

4.2. Common Ancestors in String Manipulation Processes

In some situations, it is not convenient or straightforward to summarize an observation in terms of a
joint probability distribution of random variables. Consider for example cases in which the data comes
from repeated observations under varying conditions (e.g., time series). A related situation is given if the
number of samples is low. Janzing and Schölkopf [4] argue that causal inference in these situations still
should be possible, provided that the observations are sufficiently complex. To this end, they developed
a framework for causal inference from single observations that we describe now briefly. Assume we
have observed two objects A and B in nature (e.g., two carpets), and we encoded these observations
into binary strings a and b. If the descriptions of the observations in terms of the strings a and b are
sufficiently complex and sufficiently similar (e.g., the same pattern on the carpets), one would expect an
explanation of this similarity in terms of a mechanism that relates these two strings in nature (are the
carpets produced by the same company?). It is necessary that the descriptions are sufficiently complex,
as an example of [4] illustrates: assume the two observed strings are equal to the first hundred digits
of the binary expansion of π; hence, they can be generated independently by a simple rule. If this is
the case, the similarity of the two strings would not be considered as strong evidence for the existence
of a causal link. To exclude such cases, the Kolmogorov complexity [19] K(s) of a string s has been
used as the measure of complexity. It is defined as the length of the shortest program that prints out
s on a universal (prefix-free) Turing machine. With this definition, strings that can be generated using
a simple rule, such as the constant string s = 0 · · · 0 or the first n digits of the binary expansion of π,
are considered simple, whereas it can be shown that a random string of length n is complex with high
probability. Kolmogorov complexity can be transformed into a function on sets of strings by choosing a
suitable concatenation function ⟨·, ·⟩, such that K(s1, . . . , sn) = K(⟨s1, ⟨s2, . . . , ⟨sn−1, sn⟩ . . .⟩).
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The algorithmic mutual information [8] of two strings a and b is then equal to the sum of the lengths
of the shortest programs that generate each string separately minus the length of the shortest program
that generates the strings a and b:

I(a : b)
+
= K(a) +K(b)−K(a, b) ,

where +
= stands for equality up to an additive constant that depends on the choice of the universal

Turing machine. Analogous to Reichenbach’s principle of common cause, [4] postulates a causal relation
among a and b whenever I(a : b) is large, which is the case if the complexities of the strings are large
and both strings together can be generated by a much shorter program than the programs that describe
them separately.

In formal analogy to the probabilistic case, algorithmic mutual information can be extended to a
conditional version defined for sets of strings A,B,C ⊆ {s1, . . . , sn} as:

I(A : B |C)
+
= K(A ∪ C) +K(B ∪ C)−K(A ∪B ∪ C)−K(C) .

Intuitively, I(A : B |C) is the mutual information between the strings of A and the strings of B if
the shortest program that prints the strings in C has been provided as an additional input. Based on
this notion of conditional mutual information, the causal Markov condition can be formulated in the
algorithmic setting. It can be proven [4] to hold for a directed acyclic graph G on strings s1, . . . , sn if
every si can be computed by a simple program on a universal Turing machine from its parents and an
additional string ni, such that the ni are mutually independent. Without going into the details, we sum
up by stating that DAGs on strings can be given a causal interpretation, and it is therefore interesting to
infer properties of the class of possible DAGs that represent the algorithmic conditional independence
relations.

In the algorithmic setting, our result can be stated as follows:

Theorem 3 (Inference of common ancestors of strings). Let O[n] = {s1, . . . , sn} be a set of binary
strings. If for a number c, (1 ≤ c ≤ n− 1):

1

c

n∑
i=1

K(si)−K(s1, . . . , sn)
+

≥ 0 ,

then there must exist a common ancestor of at least c+1 strings out of O[n] in any DAG model of the O[n].

(Here,
+

≥ means up to an additive constant dependent only on the choice of a universal Turing machine,
on c and on n.)

Proof. As described, algorithmic mutual information is an information measure in our sense only up
to an additive constant depending on the choice of the universal Turing machine. However, one can
check that in this case, the decomposition of mutual information (Theorem 1) holds up to an additive
constant that depends additionally on the number of strings n and the chosen parameter c. The result on
Kolmogorov complexities follows by choosing Y = (s1, . . . , sn), since K(si)

+
= I(Y : si).

Thus, highly-redundant strings require a common ancestor in any DAG model. Since the Kolmogorov
complexity of a string s is uncomputable, we have argued in recent work [5] that it can be substituted
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by a measure of complexity in terms of the length of a compressed version of s with respect to a chosen
compression scheme (instead of a universal Turing machine), and the above result should still hold
approximately.

4.3. Structural Implications from Synergy?

We saw that large redundancy implies common ancestors of many elements, and we may wonder
whether structural information can be obtained from synergy in a similar way. This seems not to be
possible, since synergy is related to more fine-grained information (information about the mechanisms),
as the following example shows: Assume the observations O[n] are mutually independent. Then, any
DAG is a valid DAG model, since the local Markov condition will always be satisfied. We also now that
r(Y ) ≤ 0, but it turns out that the amount of synergy crucially depends on the way that Y has processed
the information of the O[n] (and therefore, not on a structural property among the O[n] themselves). To see
this, let the observations Oi be binary random variables, which are mutual independent and distributed
uniformly, such that:

p(O[n]) =
n∏

i=1

p(Oi) and p(Oi = 1) = p(Oi = 0) = 1/2 .

Further, let Y = (Oi ⊕ Oj)i<j be a function of the observations (addition is modulo two). Then,
the O[n] are highly synergistic with respect to Y , that is r1(Y ) = −(n − 1) log 2. On the other hand, if
Y = O1 ⊕ · · · ⊕On, then r1(Y ) = − log 2 only.

Nevertheless, it is an easy observation that synergy with respect to Y can be related to an increase
of redundancy after conditioning on Y . Since I(· |Y ) is a measure of mutual information, as well, we
define a conditioned version of r in a canonical way as:

rc(Z|Y ) =
1

c

n∑
i=1

I(Z : Oi |Y )− I(Z : O[n]|Y ) ,

with respect to some observation Z. If I can be evaluated on non-disjoint subsets, that is if we can
choose Z = O[n], we have the following:

Proposition 2 (Synergy from increased redundancy induced by conditioning). Let O[n] = {O1, . . . , On}
and Y be arbitrary elements on which a mutual information function I is defined. Then:

rc(Y ) = rc(O[n])− rc(O[n]|Y ) ,

hence if conditioning on Y increases the redundancy of O[n] with respect to itself, then rc(Y ) < 0 and
the O[n] are synergistic with respect to Y .

Proof. Using the chain rule, we derive

rc(O[n])− rc(O[n]|Y ) = rc(Y )− rc(Y |O[n]) = rc(Y ) ,

where the last equality follows because rc(Y |O[n]) = 0.
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Continuing the example of binary random variables above, mutual independence of the O[n] is
equivalent to r1(O[n]) = 0 and, therefore, using the proposition r1(Y ) = −r1(O[n]|Y ). Thus, if
Y = O1 ⊕ · · · ⊕O[n],

r1(Y ) = −r1(O[n]|Y ) = H(O[n]|Y )−
n∑

i=1

H(Oi|Y ) = − log 2 ,

as already noted above.

5. Conclusions

Based on a generalized notion of mutual information, we proved an inequality describing the
decomposition of information about a whole set into the sum of information about its parts. The
decomposition depended on a structural property, namely the existence of common ancestors in a DAG.
We connected the result to the notions of redundancy and synergy and concluded that large redundancy
implies the existence of common ancestors in any DAG model. Specialized to the case of discrete
random variables, this means that large stochastic dependence in terms of multi-information needs to be
explained through a common ancestor (in a Bayesian net) acting as a broadcaster of information.

Much work has been done already that examined the restrictions that are imposed on observations
by graphical models that include latent variables. Pearl [1,20] already investigated constraints
imposed by the special instrumental variable model. Furthermore, Darroch et al. [21] and, recently,
Sullivant et al. [22] looked at linear Gaussian graphical models and determined constraints in terms of
the entries on the covariance matrix describing the data (tetrad constraints). Further, methods of algebraic
statistics were applied (e.g., [23]) to derive constraints that are induced by latent variable models directly
on the level of probabilities. In general, this does not seem to be an easy task due to the large number of
variables involved. Information theory, on the other hand, provides efficient methods for comparatively
easy derivations of “macroscopic” constraints, the main subject of the present article (see also [24]).

Since the initial publication of this manuscript as a preprint [25], subsequent progress has been made
on the problem of inferring DAG models from partial observations. In [26], the problem is treated
in the wider context of inferring possible joint distributions from restrictions on marginals. There,
an algorithm is presented that, even though computationally demanding, computes all Shannon-type
entropic inequalities for given marginal constraints. Furthermore, it has turned out that entropic
inequalities are useful in quantum physics where they restrict possible theories of data generation in
more general settings than the ones using Bell inequalities (see, e.g., [27–30]). Moreover, we would
like to mention that meanwhile, information measures for causal inference among strings based on
compression length have been proposed [31], thus extending the possible applications of inequalities
like the ones presented in this article.

Initiated by the work [32] of Williams and Beer, recent progress has been made related to the concepts
of synergy and redundancy [33–35]. These works, however, do not address any causal interpretations.
We think that the general methodology of connecting the redundancy and synergy of observations to
properties of the class of possible DAG models will add new insights to this research direction.
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Our generalized notion rc of redundancy (see (13)) has been used by Ver Steeg and Galstyan
as an objective function for hierarchical representations of high-dimensional data [36,37], where the
optimization is taken with respect to the variable Y .

Finally, we would like to mention the works [38] and [39] of one of us, which were based on
our present article. In the article [38], our lower bound on the entropy of common ancestors, the
inequality (15), is interpreted as a special linear inequality of entropic terms. The solution sets of such
information inequalities are studied as the basis for casual inference. The work [39] gives a tight upper
bound on our parametrized version Ic(X1, . . . , Xn) of multi-information (see (14)) and derives a method
for discriminating between causal structures in Bayesian networks given partial observations.
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Appendix

A. Semi-Graphoid Axioms and d-Separation

Consider the conditional independence relation that is induced by an information measure on a set of
objects (A ⊥⊥ B|C ⇔ I(A : B |C) = 0). Then:

Lemma 4 (General independence satisfies semi-graphoid axioms). The relation of (conditional)
independence induced by an independence measure I on elementsO satisfies the semi-graphoid axioms:
for disjoint subsets W,X, Y and Z of O, it holds:

(1) X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X |Z (symmetry)

(2) X ⊥⊥ (Y,W ) |Z ⇒

{
X ⊥⊥ Y |Z
X ⊥⊥W |Z

(decomposition)

(3) X ⊥⊥ (Y,W ) |Z ⇒ X ⊥⊥ Y |(Z,W ) (weak union)

(4)
X ⊥⊥W |(Z, Y )

X ⊥⊥ Y |Z

}
⇒ X ⊥⊥ (W,Y ) |Z (contraction)

The proof is immediate using non-negativity and the chain rule of mutual information. In the
probabilistic context, the axiomatic approach to conditional independence has been presented by
Dawid [11]. The above lemma is important, since it implies that a DAG that fulfills the local Markov
condition with respect to a set of objects is an efficient partial [40] representation of the conditional
independence structure among the observations. Namely, conditional independence relations can be
read off the graph with the help of a criterion called d-separation [1]. This is the content of the following
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theorem, but before stating it, we recall the definition of d-separation: two sets of nodes A and B of a
DAG are d-separated given a set C disjoint from A and B if every undirected path between A and B is
blocked by C. A path that is described by the ordered tuple of nodes (x1, x2, . . . , xr) with x1 ∈ A and
xr ∈ B is blocked if at least one of the following is true:

(1) there is an i, such that xi ∈ C and xi−1 → xi → xi+1 or xi−1 ← xi ← xi+1 or xi−1 ← xi →
xi+1 ,

(2) there is an i, such that xi, and its descendants are not in C and xi−1 → xi ← xi+1.

Theorem 4 (Equivalence of Markov conditions). Let I be a measure of mutual information on elements
O[n] = {O1, . . . , On}, and let G be a DAG with node set O[n]. Then, the following two properties are
equivalent:

(1) (Local Markov condition) Every node Oi of G is independent of its non-descendants Ond given its
parents Opai ,

Oi ⊥⊥ Ondi |Opai .

(2) (Global Markov condition) For every three disjoint sets of nodes A, B and C, such that A is
d-separated from B given C in G, it holds A ⊥⊥ B |C.

Proof. (1)→(2). Since the dependence measure I satisfies the semi-graphoid axioms (Lemma 4), we
can apply Theorem 2 in Verma and Pearl [41], which asserts that the DAG is an I-map, or in other
words, that d-separation relations represent a subset of the (conditional) independences that hold for the
given objects.
(2)→(1) holds, because the non-descendants of a node are d-separated from the node itself by
the parents.

B. Proof of Proposition 1

We have shown in Lemma 3 the submodularity of I(Y : ·) with respect to independent sets. The rest
of the proof is on the lines of the proof of Corollary I in [12]: First, by iteratively applying the chain rule
for mutual information, we obtain:

I(Y : X[r]) =
r−1∑
i=0

I(Y : Xi+1|X[i]) . (16)

Without loss of generality, we can assume that every Xi is part of at least one set Ok for some k. Let ni

be the total number of subsets Ok containing Xi. By definition of dk, for every k, it holds ni ≤ dk, and
we obtain: ∑

Oj , (Xi∈Oj)

1

dj
≤ ni · max

Oj ,(Xi∈Oj)

1

dj
≤ 1 . (17)
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Putting (16) and (17) together, we get

I(Y : O[n]) = I(Y : X[r]) =
r−1∑
i=0

I(Y : Xi|X[i−1])

≥
n∑

i=1

I(Y : Xi|X[i−1])
( ∑
Oj , (Xi∈Oj)

1

dj

)
(a)
=

n∑
j=1

1

dj

∑
Xi∈Oj

I(Y : Xi|X[i−1])

(b)

≥
n∑

j=1

1

dj

∑
Xi∈Oj

I(Y : Xi|X[i−1] ∩Oj)

(c)
=

n∑
j=1

1

dj
I(Y : Oj) ,

where (a) is obtained by exchanging summations and (b) uses the property of I that conditioning
on independent objects can only increase mutual information (Inequality (4) applied to Xi ⊥⊥
(X[i−1]\Oj) |Oj). This is the point at which the submodularity of I is used, since it is actually equivalent
to (4), as can be seen from the proof of Lemma 3. Finally, (c) is an application of the chain rule to the
elements of each Oj separately.

C. Proof of Theorem 1

By assumption, Oi ⊆ X , and the DAG G with node set X fulfills the local Markov condition. For
each Oi, denote by anG(Oi) the smallest ancestral set in G containing Oi.
An easy observation that we need in the proof is given by the fact that two ancestral sets A and B are
independent given their intersection:

A\B ⊥⊥ B\A |A ∩B . (18)

This is implied by d-separation using Theorem 4.
We first prove the inequality:

I(Y : anG(O[n])) ≥
n∑

i=1

1

di
I(Y : anG(Oi)) . (19)

From this, the inequalities of the theorem follow directly: (8) holds since I(Y : an(Oi)) ≥ I(Y :

Oi) using the monotony of I (implied by the chain rule and non-negativity). Further, (10) is a direct
consequence of (19) together with the independence assumption (9), since by the chain rule:

I(Y : anG(O[n])) = I(Y : O[n]) + I(Y : anG(O[n])\O[n] |O[n]) = I(Y : O[n]) ,

where the last equality is a consequence of (9).
The proof of (19) is by induction on the number of elements in A = anG(O[n]). If A = ∅, nothing

has to be proven. Assume now that (19) holds for Õ[n] = {Õ1, . . . , Õn}, such that Ã = ∪n
i=1an(Õi) is of
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cardinality at most k−1. Let O[n] be a set of observations, such thatA is of cardinality k. From O[n], we
construct a new collection Õ[n] as follows: w.l.o.g., assume m := d1 > 0, in particular O1 is non-empty
and moreover, by definition of d1, and after reordering of the Oi, we can assume that the intersection
V := ∩m

i=1anG(Oi) is non-empty. Note that V itself is an ancestral set. We define Õi = Oi\V for
all 1 ≤ i ≤ n and denote by G̃ the modified graph that is obtained from G by removing all elements
of V . Further, denote by Ĩ(A : B |C) := I(A : B |C, V ) a modified measure of mutual information
obtained by conditioning on V . One checks easily that the graph G̃ fulfills the local Markov condition
with respect to the independence relation induced by Ĩ and is a DAG model of the elements Õ[n]. Hence,
by induction assumption:

Ĩ
(
Y : anG̃(Õ[n])

)
≥

n∑
i=1

1

d̃i
Ĩ
(
Y : anG̃(Õi)

)
, (20)

where d̃i is defined similarly as di, but with respect to the elements Õi and G̃. Further, the sum is over
all non-empty Õi. By construction of Ĩ and Õ[n], the left-hand side of (20) is equal to:

Ĩ
(
Y : anG̃(Õ[n])

)
= I

(
Y : anG(O[n])\V |V

)
= I(Y : anG(O[n]))− I(Y : V ) . (21)

The right-hand side of (20) can be rewritten to:
n∑

i=1

1

d̃i
Ĩ
(
Y : anG̃(Õi)

) (a)

≥
n∑

i=1

1

di
Ĩ
(
Y : anG̃(Õi)

)
(b)
=

m∑
i=1

1

di
I(Y : anG(Oi)\V |V ) +

n∑
i=m+1

1

di
I(Y : anG(Oi) |V )

(c)

≥
m∑
i=1

1

di
I(Y : anG(Oi)\V |V ) +

n∑
i=m+1

1

di
I(Y : anG(Oi)) ,

where (a) follows, because di ≥ d̃i by definition and (b) follows because anG(Oi) ∩ V = ∅ for i > m.
Hence, by (18), V and anG(Oi) are independent; therefore, conditioning on V only increases mutual
information, as proven in Lemma 1, and Inequality (c) follows. We continue by rewriting the first m
summands of the right-hand side using the chain rule:

m∑
i=1

1

di
I(Y : anG(Oi)\V |V ) =

m∑
i=1

1

di

[
I(Y : anG(Oi))− I(Y : V )

]
≥

[ m∑
i=1

1

di
I(Y : anG(Oi))

]
− I(Y : V ) ,

where the inequality holds because
∑m

i=1
1
di
≤ 1, which has already been used (see (17)) in the proof of

Proposition 1. Summarizing, the right-hand side of (20) can be bounded from below by

n∑
i=1

1

d̃i
Ĩ(Y : anG̃(Õi)) ≥

n∑
i=1

1

di
I(Y : anG(Oi))− I(Y : V ) .

Since we have shown in (20) and (21), that the left-hand side can be bounded from above by I(Y :

O[n])− I(Y : V ), we observe that I(Y : V ) cancels and (19) is proven.
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D. Proof of Corollary 1

Proof. Let G be a DAG model of the observation of O[n] = {O1, . . . , On}. We construct a new DAG
G′, by removing the objects of A := ∪n

i=1Aci+1. Since A is an ancestral set, G′ fulfills the local Markov
condition with respect to the mutual information measure obtained by conditioning on A. We apply
Theorem 1 to G′ and the observations O′

[n] = {O1\A, . . . , On\A} to get:

I(Y : anG′(O′
[n]) |A) ≥

n∑
i=1

1

ci
I(Y : O′

i |A) . (22)

Using Assumption (11) and the chain rule for mutual information, we obtain

I(Y : A) = I(Y : anG(O[n]))− I(Y : anG(O[n])\A |A)
(a)
= I(Y : anG(O[n]))− I(Y : anG′(O′

[n]) |A)
(b)

≤
n∑

i=1

1

ci

[
I(Y : Oi)− I(Y : O′

i|A)
]
− ϵc

(c)

≤
n∑

i=1

1

ci
I(Y : A)− ϵc ,

where in (a), we used the definition of O′
i and for (b) we plugged in Inequalities (11) and (22). Finally,

(c) holds, because:

I(Y : Oi)− I(Y : O′
i|A) = I(Y : Oi ∩ A|O′

i) + I(Y : O′
i)− I(Y : O′

i|A)
= I(Y : Oi ∩ A|O′

i) + I(Y : A)− I(Y : A|O′
i) ≤ I(Y : A) ,

where the chain rule has been applied multiple times. The corollary now follows by solving for
I(Y : A).
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