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We use a notion of causal independence based on intervention, which is a fundamental
concept of the theory of causal networks, to define a measure for the strength of a causal
effect. We call this measure “information flow” and compare it with known information
flow measures such as transfer entropy.
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1. Introduction

What is mind? No matter.
What is matter? Never mind.

— George Berkeley

Information theory provides important quantities for the characterization of com-
plex systems, and there are also some reasons to believe that it pervades the physical
world in general [29]. The use of the measure of Shannon’s mutual information is
ubiquitous in this context.

A particular interest lies in the identification of the “flow of information,” in the
sense of identifying how information is processed in a given system. For this purpose,
typically variants of mutual information measures are used [16,22]. However, much
as these measures are used in the context of a “flow of information,” they are
essentially of correlative character. This, in particular, creates some situations where
such quantities are difficult to be interpreted as a “flow.” The utility of having a
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proper measure for a “flow of information” can be seen in a number of recent papers
that use simplified forms of information flow measures to characterize complexity
of information processing [4,27], robustness [3], or information processing in agents
[10, 11], as well as the complexity of neural interactions [24]. Thus, the variety of
applications for a notion of information flow signals an increased need for a well-
founded measure of information flow and promises a wide and fruitful scope of
applications for such a measure.

How to go about constructing such a measure? As we mentioned above, a pure
correlative measure does not precisely fit the bill. Different parts of a system may
share information (i.e. have mutual information), but without information flowing
between these parts. Rather, the joint information stems from a common past.

For an intuitive picture of how to move toward a measure of information flow,
consider for example a river whose waterflow one wishes to track. The standard
method of tracking the waterflow is to introduce a tracer (color or radioactivity)
into the river and to trace the occurrence of this tracer throughout the river [28].
Central to the success of the method is that the tracer consists of a material with
distinctive properties not usually found in the river.

In a similar mode, one could try to trace down information in a system. Given
an information processing system, one would add (“inject,” [15]) some noise uncor-
related with any of the unperturbed parts of the system and measure the mutual
information of different parts of the perturbed system with the noise [24]. Since
the noise is uncorrelated with the unperturbed system (corresponding to the tracer
material not found in the river before the measurement), any mutual information
found is an indicator for an information flow. This “active probing” [18] is at the
core of the experimental method. To imbue such an intuition with a precise mean-
ing, it is necessary to have a formal notion of causality [19]. This was already noted
by Lloyd [15] who recognized the importance of causal structures and interventions
for constructing a meaningful notion of information flow.

Note that there is a central difference between measuring the flow of information
and the flow of matter (as in the river example). Matter flows are additive. This
allows one to estimate the unperturbed flows via infinitesimal perturbations of
the system. Information flows, however, are nonadditive. Thus, one cannot expect
naive “active probing” to be a suitable direct measure for the information flow in
an unperturbed system. This task of calculating the information flow will occupy
us for the rest of this paper.

As with the models of material flow, we will employ graph models. The realiza-
tion of the information-theoretic perspective is achieved by considering the nodes
of this graph to be random variables. An appropriate formalism, (causal) Bayesian
networks, is well developed. The above “injection” of information is modeled in
this context as intervention in a given network, i.e. as a modification of the original
network [19]. In particular, this is intimately connected with a thoroughly studied
framework for the treatment of causal dependencies. The concept of information
flow that we will develop on the basis of causal Bayesian networks can be seen as
an information-theoretic counterpart of the probabilistic formalism from Ref. 19.
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As in Ref. 19, we will consider Bayesian networks with a finite number of nodes
each of which assumes a finite discrete number of states. While it is difficult to
say whether the formalism generalizes easily to systems with infinitely many nodes
(such as a continuous set of nodes), we expect the formalism to extend naturally
to the case where the state spaces of the nodes themselves may be continuous.a

2. Directed Acyclic Graphs

We consider a finite and nonempty set V of nodes and a set E ⊆ V × V of edgesb

between the nodes. Such a directed graph G := (V,E) serves as a model for the
causal interactions of the nodes, and we write v → w if (v, w) ∈ E. Two nodes v, w

are adjacent , in symbols v ∼ w, if v → w or w → v. We write pa(v) := {w ∈ V :
(w, v) ∈ E} for the set of parents of v. An ordered sequence (v1, . . . , vk) of nodes is
called a path from v1 to vk if vi ∼ vi+1 for all i = 1, . . . , k− 1. A path is directed if
it satisfies vi → vi+1 for all i = 1, . . . , k − 1. If v1 = vk, the directed path is called
directed cycle. A directed graph without directed cycles is called a directed acyclic
graph (DAG).

In his graphical models approach to causality, Pearl [19] assumes a DAG as
the structural specification of a causal network. Within this approach one aims at
understanding the relation between these structural and the corresponding obser-
vational properties, such as stochastic dependence or independence of the nodes.
In this regard, d-separation (d stands for “directional”) has been identified as the
graphical separation property that is consistent with stochastic conditional inde-
pendence (see Theorem 1). It is defined as follows:

Definition 1 (d-separation). Let G = (V,E) be a DAG, and let S be a subset
of V . We say that a path (v1, . . . , vk) is blocked by S if there is a node vi on the
path such that:

• either vi ∈ S, and edges of the path do not meet head-to-head at vi, or
• vi and all its descendants are not in S, and edges of the path meet head to head

at vi.

A set A is d-separated from B by S if all paths from A to B are blocked by S.
Throughout the paper, d -separation will refer to disjoint sets A, B, S.

This somewhat complicated notion of separation turns out to be the optimal graph-
ical test for the conditional stochastic independence of two variables A and B given
a third variable S. This optimality property has been proven by Verma and Pearl
([19]; see Theorem 1 in Sec. 3). In order to have a better intuitive understanding
of the d-separation concept, we consider a simple example where S is the empty
set. In that case, a set A is d-separated from a set B (by the empty set) if every

aAn information transfer formalism for continuous spaces that attempts to implement some causal
aspects was introduced in Ref. 13.
bNote that since the edges are denoted by 2-tuples, they imply directedness.
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path from A to B has a head-to-head node. Stated differently, A and B are not
d-separated if we have one of the following three situations:

(i) A is a cause of B, or
(ii) B is a cause of A, or
(iii) there is a common cause C of A and B, i.e. a set C ⊆ V \(A∪B), and directed

paths γ and γ′ from C to A and C to B.

These three situations are known to provide the graphical basis for stochastic depen-
dence of A and B.

While the notion of d-separation is characterized by its consistency with stochas-
tic conditional independence structures, the causal interpretation of arrows as direct
causal relations suggests another separation concept. Intuitively, one would like to
call a variable B causally independent of A, if A is not a cause of B, or, stated
differently, B is not an effect of A. In the graphical representation, this means that
there is no directed path from A to B. The graphical criterion for causal conditional
independence would then be given by a unidirectional separation condition as the
graphical representation of causal conditional independence structures, which we
call ud-separation (this definition is equivalent to the path interception concept by
Galles and Pearl [8], but more convenient for our exposition):

Definition 2 (ud-separation). Let G = (V,E) be a DAG, and let A,B, S be
three disjoint subsets of V . We say that B is ud-separated from A by S (in G) if
all directed paths from A to B go through S.

Example 1 (DAG layers). Let G = (V,E) be a DAG. We stratify the set V in
a natural way into layers. We start with V1 := {v ∈ V : pa(v) = ∅}. Obviously, V1

is not empty, because otherwise we could construct a directed cycle. In order to get
the next layers we iterate according to

Vk+1 := {v ∈ V \(V1 ∪ . . . ∪ Vk) : pa(v) ∩ (V1 ∪ . . . ∪ Vk) 6= ∅}, k = 1, 2, . . . .

For some k, Vk+1 is an empty set, and therefore all sets Vk+2, Vk+3, . . . are also
empty. With L := max{k : Vk 6= ∅} we have the disjoint union

V = V1 ∪ . . . ∪ VL

and the corresponding map l : V → {1, . . . , L} which assigns to each v ∈ V its layer
number l(v).
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Note that this definition does not imply a strict feed-forward architecture. By defini-
tion of the layers we know that for l(vi+1) > l(vi) we always have l(vi+1) = l(vi)+1,
i.e. forward edges always increase the layer index by exactly 1. However, there is
no such constraint for backward edges and edges inside a single layer.

Now, it turns out that for 1 ≤ r < s < t ≤ L, the layer Vt is ud-separated from
Vr by Vs. In order to see this, consider a directed path (v1, . . . , vk) from Vr to Vt.
Then the corresponding layer numbers l(v1), l(v2), . . . , l(vk) start with r and end
with t. This implies that the numbers have to go through s, and therefore the path
(v1, . . . , vk) meets Vs.

Proposition 1. Let G = (V, E) be a DAG, and let A,B, S be three disjoint subsets
of V . If B is d-separated from A by S, then B is also ud-separated from A by S.

Proof. Let (v1, . . . , vk) be a directed path from A to B. The d-separation property
implies that this path is blocked by S. Because all nodes in the path are head-to-
tail, i.e. → vi →, the only way for the path to be blocked by S is that there exists
a vi ∈ S.

Example 2. Consider the set V := {1, 2, 3, 4, 5} of nodes and the set

E := {(1, 2), (1, 3), (2, 3), (4, 2), (3, 5)}
of edges, as shown in the following figure:
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Furthermore, A := {1}, B := {4, 5}, S := {3}. Obviously, B is ud-separated from A

by S but not d-separated, because the path (1, 3, 2, 4) is not blocked by S.

3. Causal Models

In Sec. 2 we presented the structural model for causal interactions. In order to
quantitatively specify these interactions, we need a description of the nodes’ infor-
mation processing. We assume that each node v ∈ V has a nonempty and finite
set Xv of states. Given a subset A, the configurations in A are the elements of
the set XA :=

∏
v∈A Xv, and one has the natural projection XA : XV → XA,

x = (xv)v∈V 7→ xA := (xv)v∈A. We now describe the nodes v by Markov kernels

pv : Xpa(v) ×Xv → [0, 1], (xpa(v), xv) 7→ pv(xv|xpa(v)).

Within Pearl’s causality theory, these Markov kernels are interpreted mechanisti-
cally as a generative model for the local processing of the nodes. In other words,
the kernels do not just reflect an observed probabilistic relation between the values
of a node and its parents, but an actual (mechanistic) dependence: if the values of
the parent nodes are manipulated (i.e. intervention takes place), this affects their
child node directly.

This interpretation can be additionally motivated by the so-called structural
equation modeling technique. In this classical statistical modeling method, one con-
siders deterministic functions together with hidden random disturbances. It turns
out that this can be easily related to the above kernel formalism. In particular, the
causal aspects do not depend on a particular representation by structural equations.
Therefore, given a DAG G, a family of local kernels pv, v ∈ V , is called a G-causal
model. From such a mechanistic model one can then move to the phenomenological
level, obtaining the probability of observing a global configuration x = (xv)v∈V

if all nodes v are generating their output according to the kernels pv. This joint
distribution is then given by

p(x) =
∏

v∈V

pv(xv|xpa(v)). (1)

We have the following central theorem by Verma and Pearl [19, 26].

Theorem 1 (Verma and Pearl). Let G = (V,E) be a DAG, and let A,B, S be
three disjoint subsets of V . Then B is d-separated from A by S if and only if for all
G-causal models XA and XB are stochastically independent given XS [with respect
to the joint distribution (1)].

This theorem establishes the connection between the underlying graphical struc-
ture of a causal model and the corresponding stochastic independence structure with
respect to the joint distribution. The deviation from stochastic independence can be
quantified by information-theoretic measures like mutual information, conditional
mutual information, or multi-information, a generalization of mutual information
to several variables [17]. This way, the qualitative nature of stochastic independence
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is embedded in a quantitative theory which provides a measure identifying stochas-
tic interdependencies among the nodes. Unfortunately, in applications this is often
confused with the identification of causal relationships. In this paper we present a
quantitative theory of causal dependence that is based on the notion of ud separa-
tion instead of d-separation. Theorem 2, an alternative formulation of Theorem 11
from Ref. 8, will be an analog to Theorem 1. In what follows we need the notion of
causal effects [19], which is based on the possibility of intervention in causal models.
For didactical reasons we define causal effects in two steps:

Step 1. Basically, we split the node set V into a subset C of nodes in which we
intervene and into the subset D of remaining nodes which are observed. Let xC be
some (fixed) configuration in C. Setting XC = xC means replacing all mechanisms
pv, v ∈ C, in (1) by constant values xv, v ∈ C deriving from the configuration xC .
A transparent representation of the corresponding post-interventional distribution
is obtained by considering the probability of observing a configuration xD in the
complement D := V \C of C after having set xC .

p(xD|x̂C) :=
∏

v∈D

pv(xv|xpa(v)). (2)

By putting a “hat” on xC we want to distinguish the notation of this kind of condi-
tioning from the standard conditioning in probability theory, which for p(xC) > 0
is given by

p(xD|xC) =
p(xD, xC)

p(xC)
. (3)

In order to verbally distinguish these two types of conditioning, we will refer to
them as interventional and observational conditioning.

Compared with the pre-interventional distribution (1), the post-interventional
distribution (2) is obtained just by neglecting all factors pv, where v is an element of
C (truncated factorization). Note that this interventional conditioning, in contrast
to observational conditioning, is defined for all xC ∈ XC . The map (xC , xD) 7→
p(xD|x̂C) is called direct causal effect C → D, as indicated in the following figure:

For a subset A of C and a (fixed) configuration xC\A ∈ XC\A, we call the map
(xA, xD) 7→ p(xD|x̂A, x̂C\A) direct causal effect A → D imposing xC\A.



March 4, 2008 11:58 WSPC/169-ACS 00146

24 N. Ay and D. Polani

Step 2. In order to deal with causal effects that are mediated by some uncontrolled
variables, we consider an arbitrary subset B of D as shown here:

The probability of observing XB = xB after having set XC = xC by intervention
is given by

p(xB |x̂C) =
∑

xD\B

p(xB , xD\B |x̂C) =
∑

xD\B

∏

v∈D

pv(xv|xpa(v)). (4)

The corresponding map (xC , xB) 7→ p(xB |x̂C) is called causal effect C → B. As
with the direct effects of the first step, we consider a subset A of C and a con-
figuration xC\A ∈ XC\A. The map (xA, xB) 7→ p(xB |x̂A, x̂C\A) is the causal effect
A → B imposing xC\A. This allows us to compute the probability distribution
of xB depending on the particular intervention xA if the variables xC\A are fixed
beforehand (by intervention, not observation).

4. Causal Independence

We want to study causal independence. To this end, let us first have a look at the
usual concept of stochastic independence. Let A,B, S be three disjoint subsets of
V . Then XA and XB are stochastically independent given XS if for all xA, xS with
positive probability p(xA, xS) and all xB

p(xB |xA, xS) =
∑

x′A

p(x′A|xS)p(xB |x′A, xS) [= p(xB |xS)]. (5)

This condition means that observing xA after having observed xS does not change
our expectation of observing xB . In analogy, we formulate an interventional version
of this: Setting xA after having set xS does not change the probability of observing
xB . This corresponds to the condition:

p(xB |x̂A, x̂S) =
∑

x′A

p(x′A|x̂S)p(xB |x̂′A, x̂S). (6)

Unlike the conditional probability p(xB |xA, xS), the interventional probability
p(xB |x̂A, x̂S) is defined for all pairs xS , xA rather than being limited to those
with positive probability. This is due to the fact that interventional probabilities
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are defined via mechanisms rather than observations. Being able to formulate this
stronger condition allows us to define that XB is causally independent of XA impos-
ing XS , written as

XB ⊥⊥ XA|X̂S

if condition (6) is fulfilled for all pairs xA, xS . Note that this specifically includes
situations of “unseen” or “unprobed” causal dependence; this is always defined
because the network mechanisms are given for the whole domain of their input
variables. Furthermore, note that the causal independence property is not symmet-
ric. This is consistent with our intuitive understanding of causality as a directional
concept. In particular, this notion of independence is governed by rules that are
different from those underlying a graphoid structure [8]. Graphoids are an abstract
mathematical structure that captures the rules of graph-induced stochastic inde-
pendence, particularly symmetry, in compact form.

Now we are ready for Theorem 2, a causal analog to Theorem 1. It will relate the
ud-separation property associated with the graphical structure of a causal model
to causal independence. The latter depends on the specification of the local (mech-
anistic) conditional probabilities. We present an alternative formulation and proof
to Theorem 11 from Ref. 8.

Theorem 2. Let G = (V,E) be a DAG, and let A,B, S be disjoint subsets of V .
Then B is ud separated from A by S if and only if for all G-causal models XB is
causally independent of XA imposing XS.

Proof. “Only if”: We assume that B is ud-separated from A by S, and set D :=
V \(A ∪ S). We are going to prove that p(xB |x̂A, x̂S) does not depend on xA. To
this end we define

A′ := {v ∈ V : there exists a directed path from A to v that does not meet S},
B′ := V \A′.

By definition one has A ⊆ A′ and S ⊆ B′. Furthermore, the assumption of
ud -separation implies B ⊆ B′. Thus, we can decompose D into a disjoint union
of the sets A′\A and B′\S. Now we are ready to prove that p(xB |x̂S , x̂A) does not



March 4, 2008 11:58 WSPC/169-ACS 00146

26 N. Ay and D. Polani

depend on xA:

p(xB |x̂A, x̂S) =
∑

xD\B

p(xB , xD\B |x̂A, x̂S)

=
∑

xD\B

∏

v∈D

pv(xv|xpa(v))

=
∑

xA′\A

∑
xB′\(S∪B)

∏

v∈A′\A
pv(xv|xpa(v))

∏

v∈B′\S
pv(xv|xpa(v))

=
∑

xB′\(S∪B)

∏

v∈B′\S
pv(xv|xpa(v))

∑
xA′\A

∏

v∈A′\A
pv(xv|xpa(v))

︸ ︷︷ ︸
=1

=
∑

xB′\(S∪B)

∏

v∈B′\S
pv(xv|xpa(v)).

The definition of A′ and B′ implies that for all v ∈ B′\S one has pa(v) ⊂ B′. There-
fore all the expressions pv(xv|xpa(v)) of the last line, and therefore also p(xB |x̂A, x̂S),
do not depend on xA, which implies Eq. (6).

“If”: We assume that XB is causally independent of XA imposing XS for all G-
causal models and want to prove that B is ud-separated from A by S. We define
Xv := {0, 1} for all v ∈ V . Assume that there is a directed path (v1, . . . , vk) from A

to B. Without loss of generality we can assume that vi /∈ A ∪ B for all 1 < i < k.
Every node vi, i = 2, . . . , k, just copies the state of vi−1, which is contained in the
set pa(vi):

pvi(xvi |xpa(vi)) := δxvi−1
(xvi) :=

{
1 if xvi = xvi−1 ,

0 otherwise.

All other nodes are assumed to choose their state completely randomly according
to pv(xv|xpa(v)) := 1

2 .

p(xB |x̂S , x̂A) =
∑

xD\B

∏

v∈D

pv(xv|xpa(v))

=
∑

xD\B

k∏

i=2

pvi
(xvi

|xpa(vi))
∏

v∈D\{v2,...,vk}
pv(xv|xpa(v))

=
1

2|D|−k+1

∑
xD\B

k∏

i=2

pvi(xvi |xpa(vi))

=
1

2|D|−k+1

∑
xD\B

δxv1
(xv2)δxv2

(xv3) · · · δxvk−1
(xvk

)

=
1

2|B|−1
δxv1

(xvk
).
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Thus p(xB |x̂S , x̂A) clearly depends on xA, and therefore XB is not causally inde-
pendent of XA imposing XS .

Combined with Theorem 1 this result directly implies the following corollary:

Corollary 1. Let G be a DAG, and let A,B, S be three disjoint subsets of V . If
for all G-causal models XB is stochastically independent of XA given XS , then for
all G-causal models XB is causally independent of XA imposing XS.

Proof. Stochastic independence for all G-models is, according to Theorem 1, equiv-
alent to d-separation. On the other hand, according to Proposition 1, d-separation
implies ud-separation and therefore causal independence.

5. A Definition of Information Flow

We now proceed to quantify causal dependence. For this, we first have to look at
the stochastic dependence case. Stochastic dependence is measured by deviation
from independence — more precisely, the deviation of the left hand side of (5) from
its right hand side. For this purpose, we need to specify a measure of deviation or
distance between transition kernels. The application of the relative entropy as such
a measure turns out to be very consistent with information-theoretic concepts. With
a probability distribution p on XC , the relative entropy of two transition kernels P

and Q from XC to XB is defined as

Dp(P‖Q) :=
∑
xC

p(xC)
∑
xB

P (xB |xC) log
P (xB |xC)
Q(xB |xC)

.

Here we apply the usual convention that 0 log 0
r = 0 and s log s

0 = ∞ for all r ≥ 0
and all s > 0. Throughout the paper, log stands for the binary logarithm log2.
Using this deviation measure, the stochastic dependence of XA and XB given xS

is quantified as the deviation from independence [i.e. condition (5)].

Ip(XA : XB |xS) :=
∑
xA

p(xA|xS)
∑
xB

p(xB |xA, xS) log
p(xB |xA, xS)∑

x′A
p(x′A|xS)p(xB |x′A, xS)

.

(7)

Taking the mean with respect to p(xS), xS ∈ XS , gives us

Ip(XA : XB |XS) =
∑
xS

p(xS)Ip(XA : XB |xS). (8)

This is called the conditional mutual information of XA and XB given XS . In the
case where S is the empty set, this quantity reduces to the mutual information
Ip(XA : XB). One has the property

XB ⊥⊥ XA|XS ⇔ Ip(XA : XB |XS) = 0.
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Now let us come back to causal dependence. Similarly to (7), we define it as devia-
tion from causal independence, which is given by Eq. (6): The causal contribution
of XA to XB imposing xS is measured by

Ip(XA → XB |x̂S) :=
∑
xA

p(xA|x̂S)
∑
xB

p(xB |x̂A, x̂S) log
p(xB |x̂A, x̂S)∑

x′A
p(x′A|x̂S)p(xB |x̂′A, x̂S)

.

By taking the mean, we finally obtain the information flow from XA to XB imposing
XS :

Ip(XA → XB |X̂S) :=
∑
xS

p(xS)Ip(XA → XB |x̂S).

It has the same structure as (8), and it is a measure for the “visible” contribution
of a causal effect. In the case where S is empty we simply write Ip(XA → XB),
in analogy with the mutual information. It should be noted that the information
flow measure can be reformulated in terms of conditional mutual information with
respect to a modified distribution:

p̂(xS , xA, xB) := p(xS)p(xA|x̂S)p(xB |x̂S , x̂A). (9)

With this definition we have

Ip(XA → XB |X̂S) = Ip̂(XB : XA|XS).

Proposition 2.

XB ⊥⊥ XA|X̂S ⇒ Ip(XA → XB |X̂S) = 0. (10)

If p̂ as defined in (9) is strictly positive, then the implication (10) becomes an
equivalence.

Proof. This follows directly from the well-known properties of the relative entropy.

A combination of this statement with Theorem 2 directly implies the following:

Corollary 2. If Ip(XA → XB |X̂S) > 0, then there exists a directed path from A

to B that does not meet S.

Example 3 (diamond structure). Consider the following graph with nodes V =
{W,X, Y, Z} and edges E = {(W,X), (W,Y ), (Y, Z), (X, Z)}:
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We assume that all nodes have as state set {0, 1}. Node W generates a state w with
probability p1(w) = 1

2 , which is then copied by nodes X and Y . Finally, node Z

generates the XOR value of the two states x and y, which, in this case, is always
0. These mechanisms give us the joint distribution

p(w, x, y, z) =
1
2
δw(x)δw(y)δXOR(x,y)(z).

By straightforward calculations we obtain the following quantities, which illustrate
that, in general, our measures of correlation and causation express different aspects
of the system:

Correlation Causation

Ip(X : Y ) = 1 Ip(X → Y ) = 0

Ip(X : Y |W ) = 0 Ip(X → Y |cW ) = 0

Ip(W : Z |Y ) = 0 Ip(W → Z | bY ) = 1

The example shows that in moving from the correlational to the causal measure,
the value can go up as well as down.

Example 4 (channel splitting). Consider three nodes X = (X1, X2), Y , and
Z = (Z1, Z2). Node X generates a pair (x1, x2) ∈ {0, 1} × {0, 1} with probability
pX(x1, x2). One entry — say, x1 — is copied by Z1. The second entry x2 first goes
to Y and then to Z2. This gives the joint distribution

p(x1, x2, y, z1, z2) = pX(x1, x2)δx2(y)δx1(z1)δy(z2).

An easy calculation shows that the information flow from X to Z imposing Y

coincides with the entropy Hp(X1) of X1:

Ip(X → Z|Ŷ ) = Hp(X1).

If Y were not imposed, then the total flow from X to Z would just be Hp(X), i.e.
the full entropy of the input node X.

Example 5 (mediated flow). Consider the graph shown in Example 3 with
nodes W,X, Y , and Z. Again, W generates a symbol w ∈ {0, 1} with probability
1
2 , which is then copied by nodes X and Y . For node Z we consider two cases:

Case 1. Z is assumed to copy the state from X, and we have the joint distribution

p(w, x, y, z) =
1
2
δw(x)δw(y)δx(z). (11)
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The conditional mutual information Ip(X : Z|Y ) vanishes, because X and Y provide
the same information for Z. On the other hand, our information flow measure
Ip(X → Z|Ŷ ) has the maximum achievable value of 1 bit. Note that this is equal
to the unintervened information flow Ip(X → Z).

Case 2. We modify the mechanism of Z for the counterfactual situation where
X and Y are different. In that situation Z is now assumed to generate a symbol
z ∈ {0, 1} with probability 1

2 . The mechanism for identical x and y remains as in
the first case. We have the joint distribution

p(w, x, y, z) =
1
2
δw(x)δw(y) ·





δx(z) if x = y,

1
2

if x 6= y,
(12)

which coincides with the joint distribution (11) of the first case. But, here, Y deter-
mines to some extent whether X can control the outcome of Z. More precisely,
one has

Ip(X → Z|Ŷ ) =
3
4

log
4
3
≈ 0.31.

The result lies significantly below the maximum achievable information flow of 1 bit
due to the mediating effect of the imposed variable Y .

6. Information Flows in Markov Chains

Consider a chain X0, X1, X2, . . . , Xn that is generated by an intitial distribution p0

and a (fixed) transition kernel pX . In this case we have the joint distribution

p(x0, x1, . . . , xn) = p0(x0)pX(x1|x0)pX(x2|x1) · · · pX(xn|xn−1).

There is a field of research [16] which is not restricted to this simple setting, but
also deals with more general dynamical systems and aims at relating the qualitative
characteristics of a given dynamics to its information flow in time. Hereby, informa-
tion flow is usually quantified by the mutual information between a time interval
[i, j] = {i, i + 1, . . . , j} in the past and a time interval [k, l] = {k, k + 1, . . . , l} in
the future. Applied to our simple example, this would correspond to the mutual
information

Ip(X[i,j] : X[k,l]), 1 ≤ i ≤ j < k ≤ l ≤ n. (13)

Within the context of the present paper, it is natural to ask whether our definition
of information flow is consistent with the definition (13). Indeed, a small calculation
proves that

Ip(X[i,j] → X[k,l]) = Ip(X[i,j] : X[k,l]).
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However, this consistency breaks down if one wants to quantify information flows
among the elements of a composite dynamical system, i.e. a dynamical system
partitioned into different subsystems. To make clear in what sense this is meant,
we consider a system consisting of two interacting processes X and Y , as shown in
the following figure:

The processes are assumed to be generated by an initial joint distribution p0, sep-
arated into variables X1 and Y1 and then propagated via kernels pX and pY , as
follows:

p(x0, · · · , xn, y0, · · · , yn)

= p0(x0, y0)δx0(x1)δy0(y1)pX(x2|x1, y1)pY (y2|x1, y1) · · ·
pX(xn|xn−1, yn−1)pY (yn|xn−1, yn−1).

Schreiber [22] has proposed a measure, called transfer entropy , that, applied to this
situation, is intended to be capable of quantifying the information transfer from Y

to X. For 1 ≤ i, j ≤ k < n, it is defined as the conditional mutual information
Ip(Y[i,k] : Xk+1|X[j,k]). The following simple but instructive example (i = j = k)
proves that the transfer entropy does not necessarily coincide with the information
flow Ip(Yk → Xk+1|X̂k):

Example 6 (information exchange). We consider two observationally equiva-
lent cases:

Case 1. Assume that the nodes Xi, Yi in both node sequences can each assume
the state −1 or +1, and assume that at each time step k they just copy the
state of the node in the other sequence, i.e. p(xk+1|xk, yk) = δyk

(xk+1) and vice
versa.

We start with a configuration (x0, y0), distributed according to the probability dis-
tribution 1

2 (δ(−1,+1) + δ(+1,−1)). For each such initial configuration, we will, over
time, observe an (X,Y ) sequence of the form · · · → (−1, +1) → (+1,−1) →
(−1, +1) → · · · . The transfer entropy vanishes in this case for all times k (because
the predictability of the next state of component Xk+1 from its earlier state Xk is
perfect). This contradicts the intuition that by copying the state from the other node
sequence, there clearly is a flow of information. On the other hand, our measure of
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information flow has indeed the maximal value of 1 bit in this case, consistent with
intuition.

Case 2. Consider now the case where, after initial generation as in Case 1, Xk+1

is the inversion of Xk for all k (i.e. −1 becomes +1, and +1 becomes −1) and,
likewise, Yk+1 is the inversion of Yk. In particular, there is no interaction between
sequences X and Y after their initial generation. This is observationally entirely
equivalent to Case 1 and thus the transfer entropy remains 0, as before. How-
ever, its interventional dynamics is fundamentally different, and the information
flow Ip(Yk → Xk+1|X̂k) becomes 0 in this case. Thus information flow is able
to distinguish between the case of information being actively exchanged between
the chains X and Y and the case where there is no such exchange, as intuitively
expected.

Example 7 (soft transmission). We consider the following two extreme
situations:

p(xk|xk−1, yk−1) = p(yk|xk−1, yk−1) =
1
2
. (14)

Clearly, the information flow from the current state of Y to the next state of X

imposing the current state of X here is zero. The other extreme situation is given in
the following way: in order to compute the next state, both nodes copy the current
state of node Y and invert it.

(x, y) → (−y,−y), x, y ∈ {±1}. (15)

In this case, the current state of Y completely determines the next state of X.
Therefore, intuitively, one would expect a maximal amount of information flow, as
shown in the following diagram:

We now interpolate these two extreme situations of minimal and maximal informa-
tion flow in order to get a one-parameter family of transition kernels. More precisely,
we define

p(yk|xk−1, yk−1) :=
1

1 + e2βykyk−1
, p(xk|xk−1, yk−1) :=

1
1 + e2βxkyk−1

.

Here β plays the role of an inverse temperature. In the high-temperature limit
(β → 0) we recover the completely random transition (14), and in the low-
temperature limit (β → ∞) we recover the transition (15). The following diagram
compares the shape of the information flow Ip(Yk−1 → Xk|X̂k−1) and the transfer
entropy Ip(Yk−1 : Xk|Xk−1) with respect to the unique stationary distribution p as
a function of the inverse temperature β.
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As we can see, the information flow is consistent with the intuition that moving
from β = 0 to β = ∞ corresponds to an interpolation between a transition with
vanishing information flow and a transition with maximal information flow. Near
β = 0 the transfer entropy increases as β becomes larger and is close to the infor-
mation flow. But for larger β’s it starts to decrease again and converges to zero
for β →∞. The reason for that is simply that the transition for large β generates
more redundancy between the two processes X and Y . Therefore, as β grows, an
increasing amount of information about Yk−1 can be computed from information
about Xk−1, which lets the transfer entropy Ip(Xk : Yk−1|Xk−1) decrease toward
zero. More precisely, we have the following Markov transition matrix describing the
global dynamics [the rows denote (xk−1, yk−1), the columns (xk, yk) and the entries
the transition probabilities from a state at time k − 1 to time k]:

(−1,−1) (+1,−1) (−1, +1) (+1, +1)

(−1,−1) a2 ab ab b2

(+1,−1) a2 ab ab b2

(−1, +1) b2 ab ab a2

(+1, +1) b2 ab ab a2

where

a :=
1

1 + e2β
, b :=

1
1 + e−2β

.

As stationary distribution we get

p(+1,+1) = p(−1,−1) =
1
2
− ab, p(−1, +1) = p(+1,−1) = ab.
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As we can see, for β = 0 we have the uniform distribution p(x, y) = 1
4 , which implies

that there is no correlation between the two nodes. As β increases, we get more
and more redundancy, and in the limit β →∞ we get totally correlated nodes with
distribution 1

2 (δ(−1,−1) + δ(+1,+1)).

7. Intervention “Without Intervention”

Upto now we used the term “intervention” in a purely mathematical sense, without
reference to its intrinsically operational meaning. Furthermore, we assumed that the
causal model, as a mathematical structure, is given and therefore can be used for
the calculation of causal effects and corresponding information flows. On the other
hand, within an experimental setting the causal model is in general not known, and
experimental intervention in the real system provides the direct way to identify
causal effects. The effects of this active intervention would then allow the calcu-
lation of causal information flows. The transfer entropy, in contrast, although not
an adequate measure for information flow, is determined by purely observational
quantities and does not require any intervention. This raises the question whether
one also can derive the effect of an active intervention by observational data only,
i.e. without active intervention. Since there are observationally equivalent joint dis-
tributions induced by different causal models, it is clear that the solution of this
identifiability problem in general requires some additional knowledge about the
system. The specification of this additional knowledge represents a central point in
Pearl’s theory.

In order to be more precise, we consider two disjoint subsets A and B and intend
to compute the causal effect p(xB |x̂A). Given a (strictly positive) joint distribution
p(xB , xA) one can compute the conditional distribution p(xB |xA). This is in general
not sufficient for the computation of the causal effect p(xB |x̂A). Now, instead of
p(xA, xB), we consider the joint distribution p(xA, xB , xC) on an extended system
S := A∪B ∪C, and ask the question whether this is sufficient for the computation
of p(xB |x̂A). If this is the case, the causal effect is called identifiable in S. In
particular, the complete extension C := V \(A ∪ B) is always sufficient. On the
other hand, we want to find a minimal extension. We mention one special case
in order to illustrate this point. Consider two nodes v and w and set A = {v},
B = {w}, and C := pa(v). Given a strictly positive distribution p(xpa(v), xv, xw),
the so-called adjustment for direct causes provides an expression of the causal effect
p(xw|x̂v):

p(xw|x̂v) =
∑

xpa(v)

p(xw|xv, xpa(v))p(xpa(v)). (16)

The expressions on the right hand side of (16) require only the knowledge of the
marginal p(xpa(v), xv, xw). Formula (16) allows one to calculate the causal effect of
node v on node w if only all parents of v are known. Note that (16) is in general
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different from the usual conditional

p(xw|xv) =
∑

xpa(v)

p(xw|xv, xpa(v))p(xpa(v)|xv).

In the following, three simple scenarios of simulated systems demonstrate the cal-
culation of the information flow based on observational data only and also provide
further examples of how it differs from the transfer entropy.

Scenario 1. Consider the following diagram. Let X0 be a random variable that
assumes the values −1 and +1 with probability p(X0 = x) = 1

2 for each x ∈
{−1,+1}, and analogously for Y0.c

Now consider both the horizontal and the diagonal arrows to indicate a copy pro-
cess, i.e.

p(xk|xk−1) = δxk−1(xk),

p(yk|xk−1) = δxk−1(yk).

In order to ensure strict positivity, we replace this exact copy process by the fol-
lowing perturbed copy process:

p(xk|xk−1) = (1− ε)δxk−1(xk) + ε
1
2
, (17)

p(yk|xk−1) = (1− ε)δxk−1(yk) + ε
1
2
, (18)

where ε = 5 × 10−3. We now desire to calculate the information flow from Xk−1

to Yk imposing Yk−1 (for k ≥ 2) from experimental observation and compare it
with the corresponding conditional mutual information (information transfer). In
our experiment, we generate samples for X0 and Y0 and apply the perturbed copy
dynamics. From the concrete realizations of the corresponding stochastic process we
estimate (via relative frequencies) the conditional distribution p(yk|xk−1, yk−1) and
the joint distribution p(xk−1, yk−1). This information allows for an approximative
estimate of the conditional mutual information Ip(Yk : Xk−1|Yk−1). In order to
estimate the causal information flow, we have to consider the conditional mutual
information with respect to the joint distribution

p̂(yk−1, xk−1, yk) := p(yk−1)p(xk−1|ŷk−1)p(yk|x̂k−1, ŷk−1). (19)

cNote that, as the diagram indicates, X0 and Y0 are independent.
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Without knowing whether X is influencing Y or the other way round, we can
compute the interventional quantities on the right hand side of (19) by observational
information with the help of (16):

p(xk−1|ŷk−1) = p(xk−1), p(yk|x̂k−1, ŷk−1) = p(yk|xk−1, yk−1).

In our concrete application we generate 106 samples and apply our estimation for
k = 3. As a result, the information flow Ip(Xk−1 → Yk|Ŷk−1) is about 0.97 bits
(it is not exactly 1 because of the noise introduced to ensure full support) while
the transfer entropy Ip(Xk−1 : Yk|Yk−1) is 0.039 bits (again not exactly 0 because
of the small noise). This shows that the directedness of the diagram is reflected
immediately in the information flow. The transfer entropy fails to see the flow from
the X to the Y row because it essentially is a measure of predictability. Since the
values of Y at time steps earlier than Yk are confounded with Yk because of the
peculiar copying process, the transfer entropy does not see much new information
in Yk that cannot be predicted by Yk−1, and thus virtually vanishes. On the other
hand, the information flow is only preoccupied with the actual causal structure of
the system, and identifies the flow from Xk−1 to Yk as ≈ 1 bit, in agreement with
intuition.

Scenario 2. In the second experiment, the setup is almost the same as in the
previous, except that we use different arrows. Again, X0 and Y0 are (independently)
equally distributed over −1 and +1, and the arrows again indicate copying (with
the same slight amount of noise as before).

As expected, both transfer entropy Ip(Xk−1 : Yk|Yk−1) and information flow
Ip(Xk−1 → Yk|Ŷk−1) were close to 0 (order of magnitude of 2 × 10−6 bits, due
to sampling noise of the experiment).

Scenario 3. In the last experiment of the series, we calculate the same flows as
before. However, the directionality of the graph is exactly the opposite to that in
the first experiment: the arrows point from Y to X.

Everything else is kept the same, including the noisy copying operation. The transfer
entropy, still based on prediction, is again close to 0 (1 × 10−6 bits). But, unlike
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in the first scenario, the information flow is also now close to 0 (around 3 × 10−6

bits), indicating the nonexisting causal connection between Xk−1 and Yk.
As a side remark, the mutual information Ip(Xk−1 : Yk) is ≈ 0.97 bit in the first

scenario, ≈ 0 bit in the second and ≈ 0.94 bit in the third. It consistently overesti-
mates both transfer entropy (which consists in just correcting for the overestimate
of mutual information due to the correlated past) and information flow. We thus
see that the information flow captures our intuitive picture of an example where
other values do not give us the intuitively expected directionality.

Again, we emphasize that all information flow quantities in Scenarios 1–3 were
calculated from purely observational data, without having to carry out any actual
intervention. Note, however, that even while we use only observational data, the
resulting information flow measure is still a fundamentally interventional quantity.
For this to be possible, we have made use of the causal structure of the system; in
this case, we used the fact that the nodes Xk−2, Yk−2 formed the complete parent
set of Xk−1, Yk−1.

8. Further Application Areas

In Sec. 1, we have given a brief outline for possible applications of the concept of
information flow. The sketched scenarios reflect problems with a concrete and imme-
diate need for an information flow quantity that measures causal information trans-
mission in a system. Furthermore, recent interest in measures such as Schreiber’s
transfer entropy or Granger causality (which, despite its name, is an essentially
correlative quantity) demonstrates that the issue of quantifying causal aspects of
information diffusion is of high timeliness and relevance for current research. The
information flow measure introduced in the present paper addresses this question
utilizing Pearl’s full-fledged causal framework. In this section, we wish to give a
flavor of possible applications for information flow.

Physics. The unambiguous causal interpretation of information flow allows one to
enhance the identification of causal relations and mechanisms in general physical
systems. Measuring their impact provides a new tool for quantitative studies of
dynamical and complex systems, in which information-theoretic quantities have
already played a significant role in the past.

Synchronization. Synchronization is a phenomenon of great interest in the con-
text of self-organization [23]. Our expectation is that the information flow formalism
can help elicit which information flows between the different components of a system
are involved and necessary for achieving the effects of global synchronization. This
could help to clarify the mechanisms that allow the synchronization of movement
or behavior of, for example, distributed biological systems.

Game dynamics. Often one encounters game-theoretic scenarios with a dynamic
component, i.e. two players that adapt their strategies over time or two populations
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where the distribution of available strategies changes during evolution [21]. Of par-
ticular relevance are dynamics moving toward cooperative or antagonistic player
behavior. In creating models for, say, social or economic dynamics, it would be of
significant interest to use information flow to attribute how much a given player
is “responsible” for the emergence of a particular cooperative or antagonistic out-
come. This could provide a deeper understanding of some of the drives governing
socioeconomic systems.

Models for the perception–action loop. In Sec. 1, some work using information-
flow-type quantities has been mentioned. Information-theoretic principles, long
believed to be relevant for the understanding of biological information processing
[2, 6] are beginning to receive renewed attention [5, 14]. Related to that, Bayesian
and prediction-based concepts of the self-organization of the perception–action loop
prove to be increasingly successful [7, 12, 20]. The family of information flow meth-
ods thus promises to provide a calculus by which some principles guiding the emer-
gence and development of biological (and artificial) perception–action loops of intel-
ligent agents can be identified and formulated [9, 10], providing a generalization of
the information-theoretic treatment of control systems [1, 25].

With its causal character, the concept of information flow provides an addi-
tional tool in this arsenal of methods and could help to elucidate further important
issues relevant to the information processing dynamics in biological and artificial
agents.

9. Conclusions

This work was motivated by the need for a systematic quantification of the “flow of
information.” In developing this concept, we desired to capture, on the one hand,
essential properties of a Shannon-type quantity measurable in bits. On the other
hand, we aimed to realize a flow-like philosophy different from the correlative nature
of the notion of mutual information.

This required us to deviate from the computation of mutual information which
is based on purely observational quantities. An adequate modification of the formal-
ism to reflect the “flow” aspect required us to take into account the causal nature
of the systems under study. For this, we used the interventional formalism from
Ref. 19, which provided an appropriate framework for treating the causal mecha-
nisms in a given system. First, we formulated the classical mutual information by
quantifying the deviation of two random variables from stochastic independence.
Then, information flow was introduced, in analogy with mutual information, as the
deviation of two random variables from causal independence. For this purpose we
had to appropriately modify the probabilistic quantities involved in establishing
stochastic independence to fit a causal framework, with the help of Pearl’s inter-
ventional calculus.

In a number of examples we have shown that our measure for information flow
is indeed different from other widely used notions, such as transfer entropy or
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other quantities related to mutual information; in particular, our information flow
is indeed able to distinguish cases in an intuitive way which observational methods
cannot distinguish (Example 6), and has demonstrated that transfer entropy and
information flow can differ in a nontrivial way (Example 7).

Together with information flow, we have presented an appropriate modification
of well-established formalisms and concepts fitting the framework of causal Bayesian
networks. This allowed us to demonstrate how the notion of information flow is
embedded in a broad and robust framework of conceptual tools.

The concept of causality and information flow shows nicely how drastically the
ability to intervene (or “experiment”) modifies our understanding of the world.
Particularly striking is the fact that, while observational quantities are easier to
obtain (no experiments are needed), the causal concept of ud-separation is more
intuitive than the observational concept of d-separation; this expresses Pearl’s phi-
losophy that causal knowledge seems to be significantly less brittle than observa-
tional (probabilistic) knowledge [19].

New notions are typically introduced as generalizations or adaptations of exist-
ing and established concepts, often driven by theoretical considerations. However,
one of the strongest justifications for introducing a new notion is the actual practical
need for a notion with suitable properties. This was exactly the case for informa-
tion flow. If well constructed, such a notion cannot just help to cover the cases that
motivated its introduction, but also open up pathways toward novel insights into
systems not previously considered. The conceptual framework and the scenarios
studied in the present paper indicate that information flow may be a promising
candidate for achieving this.
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