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ABSTRACT

Mathematicians do not claim to know a proposition unless they think they possess a

proof of it. For all their confidence in the truth of a proposition with weighty non-

deductive support (for example, the Riemann hypothesis), they maintain that, strictly

speaking, the proposition remains unknown until such time as someone has proved it.

This article challenges this conception of knowledge, which is quasi-universal within

mathematics. We present four arguments to the effect that non-deductive evidence can

yield knowledge of a mathematical proposition. We also show that some of what math-

ematicians take to be deductive knowledge is in fact non-deductive.
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1 Introduction

Playing around with the odd integers, you notice the following pattern:

1 ¼ 1 ¼ 12

1 + 3 ¼ 4 ¼ 22

1 + 3 + 5 ¼ 9 ¼ 32

1 + 3 + 5 + 7 ¼ 16 ¼ 42

1 + 3 + 5 + 7 + 9 ¼ 25 ¼ 52:
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Having tested a few more cases, by hand or computer, and observed that the

pattern continues, you form the conjecture that the sum of the first n odd

numbers is n2. The conjecture formed, suppose you can’t for the moment see

how to prove it. At this point, is your evidence a sufficient basis for you to

know the fact—for it is one—that the sum of the first n odd numbers is n2? No.

No matter how many instances of

1 + 3 + 5 + � � � + ð2n� 1Þ ¼ n2;

you check, you cannot thereby attain knowledge of the general proposition.

The reason seems simple: although you possess some evidence, you lack a

proof.

Mathematicians more generally claim not to know a proposition unless they

think a proof of it is available.1 The Riemann hypothesis is probably the most

famous example: most experts believe it is true, for a variety of reasons, yet

since the hypothesis has not been proved, they would not claim to know it.2

Indeed, in mathematics it is a sort of methodological sin to claim knowledge in

the absence of proof. Knowledge of a mathematical proposition apparently

entails that someone or other has come up with a proof of it.

Is this quasi-universal attitude within mathematics correct? I shall argue

that it is not and that mathematicians’ conception of knowledge is overly

strict: one can know a mathematical proposition without possessing a proof

of it.

2 Why It Might Matter

Given its ubiquity, mathematicians would be foolish to deny the existence of

testimonial knowledge of mathematics, which is empirical and hence non-

deductive.3 What they assume is that a proof lies at the knowledge’s source,

i.e. that someone or other in the mathematical community has proved the

result. (We elucidate what we mean by ‘proof’ in Section 3.) Our question,

therefore, is whether there can be non-testimonial knowledge of mathematics

without proof. Where relevant below, construe any proof that contains a tes-

timonial component (for example, because it exploits a computer to verify

cases) as if it were grasped by a single individual. This qualification under-

stood, why might it matter whether non-deductive evidence is sufficient for

knowledge of mathematics? We briefly set out why it matters to the

1 ‘Proposition’ in this article usually abbreviates ‘mathematical proposition’.
2 The Riemann zeta function, z(s), is the analytic continuation of

P1
n¼1

1
ns toCnf1g. Its trivial zeros

are �2, �4, �6, . . . The Riemann hypothesis states that the non-trivial zeros of z(s) all lie on the

line with real part ½, the so-called critical line. See (Borwein et al. [2008]; Franklin [1987]) for

some of the evidence.
3 Burge ([1993]) argues against this common conception of testimonial knowledge. As the focus is

on non-testimonial knowledge, our main points are independent of Burge’s arguments.
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philosophy of mathematics, and we conclude the article with a potential im-

plication for mathematics itself.4

The conception of mathematics as starting from self-evident axioms and

proceeding via certain preserving rules of inference to theorems which via this

process come to be known with certainty might, following Lakatos ([1962]), be

called ‘the Euclidean programme’. It is of course based on (a philosophical

gloss of) Euclid’s Elements. Pascal’s Of the Geometrical Spirit is perhaps the

locus classicus of the programme’s philosophical articulation. Although the

Euclidean programme no longer holds sway as a paradigm of mathematical

(or of human) knowledge, one or two of its tenets are still standing. In par-

ticular, deduction from axioms is thought to be the highest form of justifica-

tion available for a mathematical proposition and, most relevant here, as

being necessary for knowledge. To challenge this tenet is thus to challenge

one of the last bastions of Euclideanism.

Second, there are two aspects to the deeply ingrained understanding of

mathematics as distinct from the empirical sciences. The objects of mathem-

atics are standardly thought to be abstract and its sole knowledge-generating

method deductive. The empirical sciences, in contrast, are concerned with

concrete entities (as well as abstract ones), and employ non-deductive

knowledge-generating methods (as well as deduction). To deny that

knowledge of mathematics must be deductive is thus to chip away at the

epistemological dimension of the empirical science/mathematics divide. It is

to deny mathematics its alleged special epistemic status by assimilating its

epistemology to that of the empirical sciences.

Third, an important question of mathematical epistemology is whether

every mathematical truth is knowable. Optimists believe that all mathematical

truths are knowable;5 pessimists that some are unknowable.6 However we

understand the modality involved here, all participants in this debate have

hitherto presupposed that the relevant knowledge is deductive in nature. If

this presupposition is mistaken, however, knowability optimists have further

resources to draw on. Even if there are mathematical propositions that

4 Williamson ([2000]) offers an extensive and spirited defence of the privileged role of knowledge

in epistemology. There is a subfield of epistemology that concerns itself with the value of know-

ledge over and above that of other epistemic goods, a question sometimes called ‘the extra value

of knowledge problem’, as in (Davis and Jäger [2010]) and many other papers. There are in fact

several extra-value-of-knowledge problems, depending on what other epistemic goods are al-

ready in place (true belief, justified true belief, reliable true belief, and so on). Epistemologists

usually assume that the extra-value-of-knowledge problem is not domain specific.
5 Gödel seemed to be one of their rank, indeed he proposed that all mathematical truths are

provable in some higher set theory (Gödel [1964]).
6 The more general form of epistemic optimism is that every truth is knowable. Many of the

Fitch-based arguments against general epistemic optimism, for example, (Williamson [2000],

Chapter 12), do not touch the mathematical case, since the Fitch counterexample, ‘q but it’s not

known that q’ is not a strictly mathematical proposition. I discuss Fitch’s argument in (Paseau

[2008]).
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cannot—in some appropriately interesting sense—be known deductively, per-

haps they can all be known non-deductively. Suppose for argument’s sake that

the strongest system consisting of axioms human beings can ever come to

know deductively is S, with associated theorem set Thm(S). If non-deductive

knowledge of mathematics is impossible, humanly knowable mathematical

propositions are a subset of Thm(S). But if it is possible, we could come to

know mathematical propositions not contained in Thm(S). The existence of

non-deductive knowledge of mathematics thus potentially strengthens know-

ability optimism.7

Fourth, the hypothesis that knowledge of mathematics may be non-

deductive is important for mathematical instrumentalists. Instrumentalists

construe some parts of mathematics, typically the more sophisticated ones,

as instruments for establishing statements in other parts of mathematics, typ-

ically the elementary ones. The best-known twentieth-century instrumentalist

is Hilbert, who insisted that a proof of the consistency of instrumental math-

ematics or, as he called it, ‘ideal’ mathematics should be given within

elementary or ‘real’ mathematics. More generally, the instrumentalist divides

mathematics into two parts, real and ideal,8 and sees real mathematics as in

some manner superior to ideal mathematics. Ideal mathematics discharges its

instrumental role successfully only if it delivers the ‘right’ sort of real

statements.

Gödel’s second incompleteness theorem apparently shows that real math-

ematics cannot even prove its own consistency, let alone that of the stronger

ideal mathematics. The theorem is therefore generally thought to defeat

Hilbert’s instrumentalism. The ‘inductivist’ response to this argument is

that, although it may sink Hilbert’s instrumentalism, Gödel’s second incom-

pleteness theorem does not sink mathematical instrumentalism more generally

(Paseau [2011]). Non-deductive evidence may be sufficient to warrant high

rational credence in the appropriate instrumentalist constraint—for example,

consistency—thereby meeting one of instrumentalism’s key aims. But what

about knowledge? Since a proof of consistency would presumably amount to

knowledge, the inductivist case would be strengthened if it turns out that non-

deductive evidence can also yield knowledge. That non-deductive knowledge

of mathematics is possible therefore also potentially strengthens mathematical

instrumentalism.

In sum, the possibility of non-deductive knowledge of mathematical prop-

ositions opens several doors in the epistemology of mathematics.

7 This is not to evade the limitative Gödelian results, unless non-deductive methods give rise to a

non-recursively enumerable class of new items of knowledge.
8 We stick to the vivid labels ‘real’ and ‘ideal’ without commitment to the particulars of Hilbert’s

instrumentalism (Hilbert [1967]).
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3 Two Further Examples and Preliminaries

Following the tradition of Russell ([1910]), let’s call non-deductive evidence

‘inductive’. By inductive evidence for p, then, we mean any kind of evidence

for p other than a proof of p; by definition, deductive and inductive evidence

for p partition the types of evidence for p. Two further examples help illustrate

some of the varieties of inductive evidence in mathematics.

Goldbach’s conjecture (GC) states that every even number greater than two is

the sum of two primes. Number theorists are highly confident of GC’s truth on

inductive grounds. First, there is enumeratively inductive evidence for GC, of the

same kind as in our opening arithmetical example, though much more of it: GC

has been checked for every even number up to about 4� 1018 and double-

checked up to a number not much smaller.9 Second, various slightly weaker

claims, for example that every sufficiently large odd number is the sum of three

primes (Vinogradov’s theorem),10 or that every sufficiently large number (in

another sense) is the sum of a prime and either a prime or the product of two

primes, or that every even number is the sum of no more than six primes, have

been proved. (Note in passing that this illustrates our broad use of the phrase

‘inductive evidence for p’ to include deductive evidence for statements related to,

though distinct from, p.) Third, let G(n), the Goldbach number of n, be the

number of different ways in which n can be written as the sum of two primes.

GC can then be expressed as the claim for all even n greater than two, G(n)� 1.

Computer evidence shows that the function G(n) broadly increases for even n as

n increases (with oscillation, but with an increasing trend), so that for instance

for even n & 105, G(n)� 500. In light of this evidence, that G(n) will suddenly

drop to zero appears highly unlikely. Fourth, the ratio RN¼
1
N
� (number of

k�N such that G(2k)¼ 0) has been proved to tend to zero as N tends to infinity;

in other words, the density of counterexamples to GC is zero. (If GC is true, then

RN is zero for all N.) Fifth, Hardy and Littlewood’s formula for the asymptotic

number of representations of N¼ p1 + � � �+ pm, where p1� . . .� pm are m

primes, has been proved for m� 3, and if true for m¼ 2 implies GC for suffi-

ciently large even numbers. There are more reasons to believe in GC, but we will

stop here since our intention is only to illustrate a few inductive methods in

mathematics. On the basis of this and other evidence, mathematicians are vir-

tually certain of GC’s truth—although hardly anyone would say we know GC

since it lacks a proof.11

9 The latest results can be found on the web page maintained by Tomás Oliveira e Silva <sweet.

ua.pt/tos/goldbach.html>, accessed 31 May, 2014.
10 At the time of writing, Harald Helfgott claims to have proved the unbounded version of this

theorem.
11 References I have drawn on in this paragraph include (Echeverrı́a [1996]; Kumchev and Tolev

[2005]; Nathanson [1996]).
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Rabin’s ([1980]) primality test, which performs a simple test on a randomly

chosen number k smaller than N, illustrates a different kind of inductive ar-

gument. The detailed nature of the test is not important here, only the

following facts: the conditional probability of a positive test result for k

given that N is prime is one; in contrast, the conditional probability of a

positive result for k given that N is composite is a constant c<¼. The tests

are independent for different k, so if we run the test for T times, i.e. for T

numbers smaller than N, and each time the test result is positive, then

the probability that N is composite decays like 4�T (taking c¼ 1
4
) so long as

the prior that N is prime is non-zero. For example, if one’s prior credence

in N’s compositeness is ½, then Bayes’ Theorem shows that one’s poster-

ior credence in N’s compositeness after T positive results (and no other

information) should be 1/(4T + 1), and one’s credence in its primeness

1� 1/(4T + 1).12

In a typical application of the Rabin test, one’s confidence that the witness

numbers are picked at random will admittedly be less than one. If the random

number-generator is a ‘black box’—its workings are unknown to the math-

ematician applying the test—then clearly the Rabin test applied a thousand

times should not deliver a degree of belief anything close to 1� 1/(41000 + 1).

But randomness in this context merely requires independence from any prop-

erty relevant to the test. Knowledge of the Rabin test (which is easy to under-

stand and to program) and some understanding of the mechanics of the

random number generator at the algorithmic level are usually sufficient to

convince oneself that the numbers selected are random in the appropriate

sense. Similarly, a modest amount of testing suffices for virtual certainty

that a particular computer application of the test is free of both hardware

and software failure. For all these reasons, one’s credence in N being prime as

a result of applying the Rabin test to 1000 numbers smaller than N will typ-

ically not be quite as close to one as the probabilistic argument suggests; but in

the best cases it will be fairly close.

Our three examples so far—the sum of odd numbers, GC, and primality

testing—offer, it seems to me, progressively stronger candidates for inductive

12 More generally, suppose d 2 [0,1) is one’s prior credence that N is composite, and let zT be one’s

posterior credence in the same proposition after obtaining T positive test results after T appli-

cations of the test (so that d¼ z0). Assuming that the conditional probability of a positive result

for k given that N is composite is exactly ¼ gives, by Bayes’ theorem:

zT +1 ¼
1

4
:zT=

1

4
:zT + 1: 1� zTð Þ

� �
¼

zT

ð4� 3zT Þ
:

One may check by induction that the solution to this recursion equation is

zT ¼ z0=ð4
T
� ð4T

� 1Þz0ÞÞ,

and that the case in which z0 ¼
1
2

yields zT ¼
1

4T + 1ð Þ
: Note that zT�

1
4T

� �
: z0

ð1�z0Þ
.
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knowledge of mathematics. But even the strongest of the three is controversial,

as are other examples in the literature (for instance, the example in (Steiner

[1975], pp. 102–8)). If one is to establish that inductive knowledge of math-

ematics is possible—and indeed actual—one apparently needs to go beyond

such examples and produce suasive theoretical reasons. That will be the task

of the next four sections.

Before that, it is worth addressing a ‘naturalist’ objection, which I have

heard voiced by some mathematicians, to the effect that no philosophical

considerations can overturn virtual consensus amongst mathematicians that

knowledge is impossible without proof. One response might be to question the

presumption that philosophy cannot challenge established mathematics. A

second response is more effective in this context. Our challenge is not to

what mathematicians say about mathematics but to what they say about its

epistemology, which is not their professional specialty. It is neither especially

implausible nor arrogant to suppose that they might be collectively mistaken

so far as the epistemology of their subject is concerned, to suppose more

precisely, that they are prey to a tendency to misapply the term ‘knowledge’

and err in related epistemic discriminations. If the arguments below are on the

right track and mathematicians systematically misjudge what it takes for

knowledge of a mathematical proposition, this is not a devastating indictment

of the profession. All but the most ardent naturalist should accept the legit-

imacy of challenging mathematicians’ epistemological, as opposed to math-

ematical, pronouncements.

A few words about the deductive/inductive knowledge distinction are

also in order. For the arguments in Sections 4–7 to go through, we require

no more than a decent handle on this distinction. We can all agree, for

instance, that empirical knowledge of physical facts is not deductive

(Section 7), or that the type of evidence we possess on behalf of some current

axioms and new axiom candidates for set theory is not entirely deductive

(Section 6). Although there is no need to analyse the notion of deductive

knowledge for our purposes, a tentative and partial elucidation might none-

theless prove helpful. We may think of deductively known axioms as true

statements that the subject believes on the basis of sufficient intrinsic justifi-

cation. Anyone interested in analysis or a deeper account will of course want

to know more about each of the terms ‘sufficient’, ‘intrinsic’, and ‘justifica-

tion’. For our purposes, suffice it to say that justification is intrinsic if it does

not depend on other statements of the system or on the evidence for them.

Note that our characterization allows that axioms may be known in this way

without attaining the exacting standard of self-evidence, or that they may be

thus known by virtue of constituting the subject matter at hand (an example

may be set theory’s axiom of extensionality). We may in turn think of a

statement as known deductively just when it is known by deduction from
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deductively known axioms.13 Our attitude towards what constitutes a legit-

imate deductive argument or proof is roughly that of the working mathemat-

ician: proofs are the types of things generally referred to by that name in

mathematics journals and mathematics lectures. In particular, we do not

insist that proofs need be formal or even formalizable, and we certainly do

not insist that proofs must take the form of a strict deduction in some formal

system; we allow that proofs may include pictures or diagrams, as they cus-

tomarily do in geometry or algebraic topology say; and we allow as a proof

something that a stricter usage might call a proof sketch, i.e. a fairly tele-

graphic set of instructions for generating a deductive argument. Our elucida-

tion of deductive knowledge is thus rather liberal, as it should be if the

conclusion that there can be non-deductive (non-testimonial) knowledge of

mathematics is to be interesting.

With these preliminaries behind us, we turn at last to the arguments.

The first two are plausibility considerations from general epistemology;

the third is based on how we know the axioms of a literally-interpreted

branch of mathematics (here: set theory); and the fourth attempts to

establish that knowledge of mathematics is attainable without proof by

proposing that such knowledge is sometimes derivable from empirical

knowledge.

4 An Exclusive Epistemic Virtue of Proof ?

Our first general-epistemological plausibility argument is that deduction does

not seem to possess any special knowledge-conferring property that inductive

arguments lack. As we cannot hope to survey all the possible candidate prop-

erties here, and since much work on this front has already been done, we shall

be brief. Fallis ([1997], [2002]) has investigated the epistemic virtue probabil-

istic ‘proofs’ might be thought to lack that deductive arguments enjoy, and has

assessed the merits of certainty, threshold degree of certainty, conditional

certainty, and a priori warrant. His conclusion is that none of them fit the

bill. This section is intended as something between a reminder of, and a short

supplement to, Fallis’ arguments generalized to the question of what epistemic

virtue inductive arguments might lack that deductive arguments enjoy. We

select four virtues with either prima facie plausibility or historical pedigree—to

wit, certainty, unrevisability, reliability, and explanatoriness—and sketch how

the arguments might go in each case.14 The conclusion that apparently

13 We allow one-line deductions so that deductively known axioms are deductively known tout

court.
14 Setting testimony aside, as explained.
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emerges is that there is no (non-question-begging)15 property had by deduc-

tions necessary for knowledge of mathematics that cannot be had by inductive

arguments.

Certainty: According to the traditional picture, axioms are certain and in-

ferential steps are certainty-preserving. Deductions thus deliver their conclu-

sions with certainty, whereas inductive arguments only offer uncertain

unknowledge.

This traditional picture is a long way off the mark. That we are in posses-

sion of a proof of p does not imply that we should be certain of p. We may not

be certain of the proof’s premises, and it would be irrational to be more certain

of an argument’s conclusion than its premises if the argument is our sole

reason for believing the conclusion. We don’t know the axioms of set

theory with certainty, and in practice the starting points of contemporary re-

search in a branch of mathematics are not known with certainty, even if they

are universally assumed. It seems rationally permissible to give degree of belief

less than one to many claims, in mathematics and elsewhere.16 Given the

normative (some would say constitutive) link between degrees of belief and

betting behaviour, certainty in a statement implies that you should be willing

to stake your life, risk eternal damnation in hell, and so on, for no return on its

truth. Yet it is rationally permissible to be unwilling to go to the stake over the

truth of the conclusion of any argument; it is rationally permissible for fallible

inquirers to maintain a degree of doubt in virtually any claim.

Second, inference rules need not be certainty preserving nor indeed

credence-preserving. Typical deductive steps in mathematics are relatively

large. Indeed, at the research level many such leaps are transparent only to

experts. Even ‘atomic’ inferential steps, of the type found in natural deduction

systems, need not be credence-preserving. It is not irrrational, for example, to

give credence of less than one—say credence 1� e for positive (perhaps very

small) e—to the proposition that double negation elimination (not-not-p,

therefore P) is truth-preserving. Double negation elimination is a classical

rule questioned (for non-decidable statements) by intuitionists and intuitionist

sympathizers, a camp that includes L. E. J. Brouwer, Arend Heyting, and

Michael Dummett—formidable thinkers all. Even if you are a committed

classical logician, given the history of this dispute it would not be unreason-

able—and it would certainly be rationally permissible—to lower your cre-

dence in the rule’s truth-preservation by some small positive e. It seems

rationally permissible for example to give positive credence, however slight,

15 A question-begging property would be a property such as being deductive or logically entailing

the conclusion.
16 We interpret certainty in p as entailing degree of belief one in p; no commitment to the converse

is made.
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to the hypothesis that Dummett’s ([1973]) arguments for intuitionism are

sound.17

In sum, deductive steps do not necessarily preserve certainty for two rea-

sons. One is that a mathematician might reasonably doubt a step (for example,

double negation elimination). Another is that a mathematician might reason-

ably doubt that all the steps were applied correctly, as is illustrated by the fact

that published proofs are occasionally retracted (see below).

Two final points are also worth noting. At least some empirically (and thus

inductively) justified propositions about one’s immediate environment, or per-

haps of one’s own mental states, are more justified than various theorems we

believe. And in any case the certainty of knowledge is a side issue, since our

interest is in whether inductive knowledge of mathematics is possible, not

whether such knowledge would be certain. All these points could be developed

further, of course, but it should be fairly clear that the delivery of certain

knowledge is not the hallmark of deduction.

Unrevisability: A deductively valid argument is monotonic in the sense that

new premisses will not convert it into an invalid one, in contrast to inductively

valid arguments. The latter are systematically subject to one type of threat of

non-permanence that deductive arguments are not. This, it might be said, is

the preserve of deductive arguments.

It is indeed characteristic of inductive arguments that the addition of

premises can invalidate them. This logical sense of permanence—

monotonicity—however, is quite distinct from epistemic permanence. Proof

almost never (if at all) achieves epistemological permanence in the sense of

rational unrevisability of its conclusion. We may later come to reject some of

the premises of any proof we currently accept, or we might reject some of its

inferential steps, or we may for some other reason come to suspect the argu-

ment of invalidity (for example, because of its length). The history of math-

ematics throws up many examples of erroneous ‘proofs’, even by leading

mathematicians,18 and of centuries-long tenets now widely repudiated: that

all numbers are positive or that they are all real, that space is Euclidean,

that the whole is greater than the part, that all functions are linguistically

expressible, and so on. If fallibilism about p is the doctrine that we

should maintain belief in p in an open-minded spirit that allows that

17 Paseau ([forthcoming]) develops these ideas further. Although deductively valid arguments

shouldn’t always preserve high credence, it is notoriously difficult to give a theory of rational

credence that allows for this to fail. As many have noted, for example, Franklin ([1987], p. 13), a

formal theory of these facts is not available should not lead us to cast doubt on their existence.
18 See, for example, (Davis [1998]; Hersh [1979], p. 41; [1997] pp. 43–5; Crowe [1988], Section 4,

pp. 263–5; Krantz [2011], pp. 215–7). The remarkable Lecat ([1935]) lists 500 examples of long-

standing—as opposed to easily detected—mathematical errors, committed by 330 mathemat-

icians, including Abel, Cauchy, Cayley, Chasles, Descartes, Euler, Fermat, Galileo, Gauss,

Hermite, Jacobi, Lagrange, Laplace, Legendre, Leibniz, Newton, Poincaré, and Sylvester.
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future evidence may give us reason to reject p, then we should be fallibil-

ist about many deductively justified mathematical beliefs. In short, the

traditional picture that proof entails unrevisability applies at best to small

pockets of mathematics.19

Reliability: Although deduction is by and large more reliable than induction

as a general method, in mathematics and elsewhere, and although the best

deductive arguments may be more reliable than the best inductive ones, it is

not true that knowledge-generating deductive arguments are always more re-

liable than inductive ones. The Rabin test exemplifies just how reliable induct-

ive evidence can be, namely, extraordinarily reliable even by the high

standards of the exact natural sciences. More generally, although most math-

ematicians quite reasonably regard deductive evidence as generally speaking

more secure than inductive evidence, they would concede that a deductive

argument is not always a better guarantee of its conclusion’s truth than an

inductive one. Indeed, keen ‘experimentalists’—mathematicians who develop

and make much use of such methods—point out that strong inductive

arguments are more convincing than the specious deductive arguments one

regularly encounters in mathematical journals.20

As a brief illustration—such examples are easily multiplied—at the time of

writing many group theorists think that the best evidence that the classifica-

tion of finite simple groups is complete is not the behemoth of a proof finally

collated in the 1980s. They tend to value more highly the inductive evidence

that no finite simple group has yet been found that fails to slot into any of the

classifying families. Note in passing that these points suitably elaborated see

off the claim that deduction is necessary for knowledge of mathematics, but

not knowledge of other domains, because mathematicians have high

standards.21

Explanatoriness: As for explanation, more briefly, a deductive proof might

not offer an explanation either. Many deductive proofs are not explanatory.

For example, proofs of generalizations that proceed disjunctively, with differ-

ent instances having entirely different sub-proofs, are not explanatory.

Famous examples include the Appel-Haken proof of the four-colour theorem

in 1976, Hales’ 1998 proof of Kepler’s sphere-packing problem, and the

19 For a more systematic discussion of the revisability of our knowledge of mathematics, see

(Casullo [1988]).
20 As a leading experimentalist puts it:

I don’t trust humans a lot. You know, people think that a written proof is the gold

standard. I think many mathematical papers and arguments contain errors and

gaps and the only reason we don’t find them is because they don’t get read. On the

whole, the building of mathematics is sound, but if a mathematical statement

works out in a computer test, then I believe it a lot more. (Sturmfels [2008], p. 5)

21 Or to put it in contextualist terms, because mathematical contexts are high-standard contexts.
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already-mentioned classification of finite simple groups. These examples are of

course cases of testimonial knowledge, since they involve computer assistance

or reliance on others’ results. Bracketing the testimonial aspect, the point is

that the resulting proofs in themselves are too disjunctive to be explanatory. If

I had more space, I would also develop the point that if by explanation we

mean something that conveys understanding,22 heuristic arguments can be

more explanatory than deductive ones.

In sum, none of our candidates differentiates inductive arguments from

deductive ones. Combining these considerations with those advanced by

Don Fallis, a challenge arises for those who would defend orthodoxy: find

an epistemic property, E, enjoyed by (some) deductive arguments but no

inductive ones, and show that E is necessary for knowledge-generation in

mathematics. Although we have by no means exhausted the possible candi-

dates for E, the absence of plausible contenders is highly suggestive.23

5 Analyses of Knowledge

Although it is virtually tautologous that knowledge of mathematics is one of

the many forms of human knowledge, this fact is pregnant with implications

for mathematical epistemology. General considerations about knowledge sug-

gest that inductive knowledge can exist in mathematics just as it can elsewhere.

As is very familiar, Gettier ([1963]) demolished a long tradition of equating

knowledge with justified true belief. Ever since, the search has been on for the

solution to the equation

Knowledge that p ¼ True Belief that p + X :

Notoriously, none of the myriad proposed conditions has achieved consensus,

although many have been thought to be along the right lines, or at least to

cover an important range of cases. For brevity, call any analysis that has

gained at least some traction in the literature a ‘right-track analysis’. Any

right-track analysis falls into one of two categories, I claim: either it allows

that knowledge of mathematics may be inductive; or it does not apply to

knowledge of mathematics, and a fortiori does not privilege a deductive, as

opposed to an inductive, route to knowledge of mathematics.

22 Brown ([2012]) sees this as one of the two chief senses of explanation.
23 Easwaran ([2009]) argues that proofs but not inductive arguments are transferable. Whether

inductive arguments are truly untransferable remains unclear; see Jackson ([2009]) for critical

discussion. Either way, by his own account, Easwaran is offering a descriptive account of what

makes an argument mathematically acceptable. He is not suggesting that transferability is ne-

cessary for knowledge-generation independently of what mathematicians think.
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Establishing this moral calls for a vast literature review. We cannot do that

here, so we illustrate the point with a handful of analyses, starting with two

classic conditions (supplementary to true belief):

. the belief that p is justified (see Plato’s Theatetus);

. the belief that p was caused by the fact that p ([Goldman 1967]).

The Platonic condition allows for inductive knowledge of mathematics,

assuming that inductive evidence (for example, of the type we have for GC,

or that found in primality testing) can justify a mathematical proposition. This

assumption follows on virtually all prevailing conceptions of justification;24

Franklin ([1987]) is among the many who have argued that inductive evidence

in mathematics is indeed a form of justification. On the other hand, on the

usual platonist picture, Goldman’s causal condition falls under the other cat-

egory: it rules out all knowledge of mathematics, deductive or inductive, given

the relatively uncontroversial assumption that facts about abstract objects do

not cause our beliefs in them.25 Precisely for this reason, Goldman did not

intend his analysis to apply to mathematics.

The same style of argument can be run on other post-Gettier right-track

analyses, some of the earlier ones being:26

. the belief that p is not inferred from a false lemma (Clark [1963]) or its

justification must not essentially rest on a false assumption (Harman

[1973]);

. there is a law-like connection between the fact that p and the belief that p

(Armstrong [1973]);

. the belief that p is produced by a reliable process not undermined by the

subject’s cognitive state (Goldman [1986]);

. if it were the case that not-p then the subject wouldn’t believe p (Nozick

[1981]).

In the best inductive cases (think of judicious primality testing or the examples

from Section 7 below), the belief that p is justified and its justification does not

rest on a false lemma or a false assumption. Armstrong’s ([1973]) ‘reliable-

indicator’ analysis is in the other camp, as it was not intended to cover

24 Some epistemologists have recently tried to narrow the gap between justification and knowledge

by seeing the former as a type of ‘would-be knowledge’ (Bird [2007]; Smith [2010]); Sutton

([2007]) takes this tendency to an extreme by arguing that there is no gap between justification

and knowledge. McGlynn ([2012]) criticises the former accounts, supporting instead a trad-

itional position according to which one is justified in believing that p iff p is sufficiently likely

given one’s evidence. A conception of justification that assimilates it closely to knowledge may

be compatible with—indeed, it may promote—the thesis that inductive knowledge of mathem-

atics is possible.
25 But not entirely uncontroversial. For instance, some Gödelian platonists may deny this claim.
26 These are some of the proposed analyses’ characteristic clauses. I have omitted qualifications,

refinements, and extra clauses that do not affect our general point.
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knowledge of mathematics. On most accounts of reliability, the best inductive

methods in mathematics satisfy Goldman’s ([1986]) ‘process-reliabilist’ con-

ditions. Finally, Nozick’s truth-tracking condition is not easily applied to

mathematics because mathematical propositions are usually thought neces-

sary, and we lack a decent account of counterfactuals with impossible

antedents.27 Countermathematical conditionals about which we do have

intuitions, for what these are worth, tend to support our conclusion. For

example, we are liable to think that if the Riemann hypothesis were false we

would lack the evidence we in fact possess for it, and consequently that we

wouldn’t believe it. Similarly, if the perpendicular bisectors of Euclidean tri-

angles did not meet in a point then the physical experiments described in

Section 7 presumably wouldn’t lead us to conclude that they do. If a particular

number were composite rather than prime then the primality test evidence

would be different. And so on. In sum, whether we take such intuitions ser-

iously or not, the truth-tracking condition does not privilege a deductive route

to knowledge of mathematics.

Notice in passing that the best inductive mathematical cases are quite unlike

the much-discussed ‘lottery cases’, in which a subject has an arbitrarily high

degree of justification for her belief that her ticket won’t win (1� 1
N

, where N

is the number of tickets) and yet doesn’t know this fact. In the lottery cases, the

subject’s evidence for p is insensitive to whether p is true: she has the same

evidence and belief in the scenario in which she holds the winning ticket as in

the N – 1 nearby scenarios in which she holds a losing ticket. Not so for the

best inductive cases in mathematics, for the reasons just sketched.

Nozick’s truth-tracking condition has come to be known as ‘sensitivity’.

Williamson ([2000]) considers the related ‘safety’ condition on knowledge,

that the subject could not easily have falsely believed that p. The best inductive

cases satisfy this condition too, since mathematical beliefs are safe if true.

Of course this is only a selection from a vast number of analyses and criteria

in the literature, and we have not considered accounts of knowledge other

than analyses or criteria. But broadening the range would not alter the moral.

General epistemology has not converged on any condition that excludes an

inductive (non-testimonial) route to knowledge of mathematical propositions.

No right-track analyses allow deductive routes to mathematics whilst ruling

out inductive ones. As a prominent field of inquiry, mathematics is, and

should be, a test case for general epistemology.28 If the only (non-testimonial)

route to knowledge of a mathematical proposition were deductive, you would

expect some prominent general accounts of knowledge to have this

27 Many philosophers claim that counterfactuals with impossible antecedents are true, but they

usually do so for shallow technical reasons. Soames ([2010], pp. 56–8) offers a succinct overview.
28 That said, in practice several epistemologists follow Goldman ([1967]) in explicitly restricting

themselves to empirical knowledge or knowledge of contingent truths.
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implication. That none does is not a vindication of the possibility of inductive

knowledge of mathematics, but it does lend it plausibility.

6 The Inductive Basis of (Some) Deduction

It is familiar that some mathematical axioms gain their justification from their

mathematically desirable properties. Russell ([1907]) was the first modern

philosopher to emphasize this form of justification.29 He called it the ‘regres-

sive method’ and used it to justify his axiom of reducibility (Russell [1910],

pp. 250–1). Gödel famously held a variant of this view ([1964], p. 261). The

more recent work of Penelope Maddy has stressed the various extrinsic rea-

sons for believing the axioms of set theory ([1988], [1990], [2011])—that the

axioms are mathematically effective and fruitful—as opposed to intrinsic rea-

sons, for example that the axioms are self-evident or part of the concept of set

([2011], p. 47). In this terminology, at least part of the reason for accepting

ZFC’s axiom of choice, the (infinitely many instances of the) axiom scheme of

replacement, or the axiom of infinity is inductive. The extrinsic argument

for these principles is based on the assessment of their mathematical power;

for example, the axiom of choice yields a workable theory of transfinite arith-

metic. Indeed, both the ‘Z’ and the ‘F’ in ‘ZFC’—Zermelo and Fraenkel—

believed that the system’s axioms were in part extrinsically justified.30

Let’s consider the situation schematically. Suppose a set of axioms, O (for

‘old’), is given. Here we are excluding ‘structuring’ axioms—about general

structures such as groups, rings, fields, topological, or metric spaces—which

define their subject matter. Our focus instead is on axioms about a particular

structure: think of set-theoretic axioms, aiming to capture facts about the

universe of sets. It does not matter here just how the axiom set O is known.

A new axiom candidate, N, is proposed at some point. N is quickly seen to

have many extrinsic virtues; as a consequence it is adopted as an axiom. In the

course of one mathematical generation, say, the set of axioms expands from O

to O [ {N}.

Suppose p is a consequence of N in conjunction with axioms in O, as comes

to be appreciated, and that N is necessary for p’s derivation. Thus:

O 6‘ p,

O [ Nf g‘p:

29 Irvine ([1989]) offers a pertinent discussion.
30 See (Zermelo [1967], p. 189), which contains his dictum ‘Actually, principles must be judged

from the point of view of science, and not science from the point of view of principles fixed once

and for all’. Fraenkel: ‘the intuitive or logical self-evidence of the principles chosen as axioms [of

set theory] naturally plays a certain but not decisive role; some axioms receive their full weight

rather from the self-evidence of the consequences which could not be derived without them’

(cited in (Lakatos [1976], p. 250), which contains more relevant quotes).
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What is the evidence for p, assuming a proof from O [ {N} is our route to it?31

The evidence for logic, the evidence for O,32 and the evidence for N. But the

evidence for N, we said, was inductive. Hence the evidence for p is in part

inductive; it is not strictly deductive. If one knows that p via logic and know-

ledge of N and O, then if one’s knowledge of N is inductive then in the typical

case one’s knowledge of p will also be inductive.

It is worth bringing into the open an epistemological rule of thumb implicit

in this argument. To use a metaphor from genetics, in the normal run of cases

inductive evidence is ‘dominant’ and deductive evidence ‘recessive’, meaning

that a combination of the two is usually inductive (compare the ‘dominance’

of a posteriori evidence and the ‘recessiveness’ of a priori evidence). For

example, suppose that I justify p1 by deducing it from some premises that

include the fact that the British winter of 2010 was cold, for which I have

inductive justification (I experienced it); that I justify p2 by deducing it from

some premises that include the fact that 261
� 1 is prime, my justification for

which is inductive (it consists of computational evidence);33 and that I justify

p3 by inferring it using a non-deductive rule of inference (enumerative induc-

tion, say). My justification for each of p1, p2, and p3 is inductive overall: if I

know any one of these propositions, I know it inductively.34

The schematic argument just given is an argument for the possibility of

inductive knowledge of mathematics (more precisely, for knowledge of any

branch of mathematics with an intended subject matter). That such knowledge

actually exists follows from the supplementary fact that our knowledge of

some axioms is in fact inductive. The argument for this last fact—for instance,

that the mentioned axioms of ZFC are known inductively—can be found in

the works cited above and in many others, and will not be rehearsed here.

Perhaps a twenty-first century example of an inductively supported axiom will

be ADLðRÞ, i.e. the axiom of determinacy restricted to the smallest inner model

for ZF that contains the reals, or more plausibly perhaps, a principle that

implies ADLðRÞ.35 Should the considerable inductive evidence for ADLðRÞ be

deemed strong enough for it to be adopted as an axiom, then propositions

31 Of course, p could come to be known via another epistemic route. If p is otherwise deductively

knowable and O 7 N$ p, then N could come to be known deductively via deductive knowledge

of p and of O; but this is not the case under consideration.
32 More precisely, the evidence for the principles in O used in the derivation.
33 As it happens, a proof that this number is a Mersenne prime also exists.
34 In some cases, inductive evidence can be combined to form deductive evidence. For example, a

proof P1 of p1 may be inductive evidence for p1 ^ p2, and similarly a proof P2 of p2 may be

inductive evidence for p1 ^ p2. Taken together, however, the two proofs P1 and P2 are deductive

evidence for p1 ^ p2. Similarly, checking odd cases provides inductive evidence for a number-

theoretic conjecture, as does checking even cases; putting the two together yields a proof. See

(Baker [2008], p. 338) for a version of this point.
35 Maddy ([2011], pp. 47–51, 126–31) summarizes the case for the extrinsic justification of ADLðRÞ.

She stresses the primacy of extrinsic over intrinsic justification more generally ([2011],

pp. 134–7).
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deduced from it will be known on inductive grounds, even if they are deduced

logically from an axiom. Another way of putting the point is that it is insuf-

ficient for a principle to be known deductively that it should be both known

and an axiom. ZFC’s infinity, replacement, and choice axioms are cases in

point; and if ADLðRÞ were adopted as an axiom tomorrow because of the

considerable inductive evidence behind it, our justification for it would not

turn from inductive to deductive overnight.

It does not follow from this argument that the justification for axiom N will

forevermore be inductive. Perhaps its justification changes over time. We must

also distinguish between accepting N and elevating N to the status of axiom. If

N is already known, it does not follow from the fact that there are extrinsic

reasons for elevating N to axiomhood that the proposition p, which follows

from O and N, is known inductively. Our claim is that we know some state-

ments that are axioms inductively, not merely that axiom status is bestowed

upon some already-known statements for inductive reasons.

7 Physical to Mathematical Linkages

We can derive knowledge of mathematical propositions from knowledge of

related physical ones. Let us examine an elementary geometric case in some

detail. Suppose you draw a triangle on a piece of paper and construct perpen-

dicular bisectors on its sides. You then notice that the three constructed lines

meet at a point (Figure 1).

You repeat the exercise with many different triangles and observe the same

fact. You try triangles of different sizes, of different angles (in particular,

triangles with an obtuse angle, right-angled triangles, and triangles in which

all the angles are acute), different orientations, and so on. You use a very fine

pencil to draw the various line segments; you might even exploit technology to

make sure the lines are accurately drawn. On the basis of these ‘experiments’,

you come to believe with great confidence that the perpendicular bisectors of

any planar triangle meet at a point.

Let us imagine that you did not know the related mathematical fact before

performing the paper-and-pencil experiments. Imagine further that you are

sensitive to the distinction between physical and mathematical space. You

appreciate that your drawings are not part of the Euclidean plane. What

you believe, correctly, is that they are approximately isomorphic to figures

in this plane, a relationship you symbolize as:

Triangles drawn on paper ffia Triangles in Euclidean plane �ð Þ:

(*) is supposed to capture a two-way relationship (since approximate iso-

morphism is symmetric): any physical triangle drawn on your piece of paper

is approximately isomorphic (with respect to a certain class of geometric
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properties) to a Euclidean triangle; conversely, any Euclidean triangle is

approximately isomorphic (with respect to the same properties) to a physical

triangle.36 It follows from (*) that if all drawn triangles have their perpendicu-

lars bisectors meet in a point, then all Euclidean triangles do too. Suppose that

you know (*); that you know the facts about your drawings empirically; and

that you combine these two facts to infer the corresponding mathematical fact

about triangles in the Euclidean plane. You have thereby gained inductive

knowledge of a mathematical fact.

It would be hard to deny that you can come to know the generalization

about physical triangles in this way, assuming that your diagrams are drawn

with sufficient care and that you have taken all the relevant variables into

account. If you cannot come by such knowledge under such propitious cir-

cumstances, that does not bode well for knowledge of other physical general-

izations, for example, that if you drop an object it will fall. Note that the

physical generalization in question is about all physical triangles drawable

on your sheet(s) of paper rather than the more open-ended and vulnerable

one about all physical triangles in spacetime. We could in any case avoid

generalization if we wish, basing the argument on the fact that a given physical

triangle of specified side lengths has the stated property.

You could argue that since the physical generalization is exact rather than

approximate, you cannot come to know it via experimentation because ex-

periments cannot give you more than approximate knowledge. But by parity

of reasoning that would imply that you cannot know an exact relationship

between variables in a physical equation, which would be a devastating con-

sequence for physics and for the possibility of exact scientific knowledge more

Figure 1. A triangle’s perpendicular bisectors meet at a point.

36 What the relevant geometric properties are exactly need not detain us. If precision is sought, take

them as the properties invariant under translations, rotations, reflections, and (non-zero)

scalings.
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generally. Anyway, we could change the example to an approximate statement

rather than a precise one. For instance, if the two medians, AA0 and BB0, of

triangle ABC (where A0 and B0 are the midpoints of BC and AC) meet in a

point, G, then the length of AG is roughly twice the length of GA0. (In the

Euclidean plane the ratio is exactly two.) In sum, inductive knowledge of

physical facts about triangular drawings does not seem particularly problem-

atic, modulo fairly strong scepticism about the possibility of empirical

knowledge.

It would also be hard to deny knowledge of the approximate isomorphism

claim. After all, we exploit mathematical–physical approximate isomorphisms

all the time to gain knowledge of the physical world from mathematical

models. The first step in such uses is to argue that a physical structure is

exactly or approximately isomorphic to a mathematical one; the second is

to reason about the mathematical structure to derive a mathematical

conclusion; the third is to infer the analogous conclusion about the physical

structure, this time exploiting the exact or approximate isomorphism in the

opposite direction than was used in our example, that is, in the mathematical-

to-physical direction at this last stage. (I am not saying that all applications of

mathematics to the physical world are of this simple form; only that some are.)

It would be a devastating blow to the use of mathematics to gain knowledge of

the physical world, surely a successful enterprise, if approximate isomorph-

isms such as (*) were not knowable.

A sceptic could of course grant that every physical triangle is approximately

isomorphic to a Euclidean one, thus allowing for applications, but

question the fact that every Euclidean triangle is approximately isomorphic

to a physical one, which is what we are relying on in our example.

One response to this sceptic would be to marshal our evidence for (*),

which supports both directions of the approximate isomorphism. If the

class of relevant properties is invariant with respect to (non-zero) scaling, it

is hard to see what could be the basis of such scepticism. Another response is

to modify the conclusion: the mathematical proposition the physical experi-

ments allow us to know inductively is that some Euclidean triangles—not

necessarily all—have (or approximately have) the perpendicular bisector

property.

The particular example of a triangle’s perpendicular bisectors meeting at a

point is elementary in the extreme and admits of a trivial proof.37 One might

question whether you could realistically use (*) to come to know this fact,

since, it might be said, to know (*) you must have tried out the approximate

37 Let X be the point where the perpendicular bisector of AB and AC meets. Then by the property

of perpendicular bisectors, X is equidistant from A and B as well as equidistant from A and C.

Hence X is equidistant from B and C and therefore also lies on the perpendicular bisector of B

and C.
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isomorphism on this kind of case in the first place. I doubt that knowledge of

the perpendicular bisector property is a prerequisite for knowing (*). In any

case, one can pick a less obvious example, say the existence of the Feuerbach

nine-point circle.38

You might argue that perhaps space is not Euclidean, in which case the

isomorphism would not obtain. But (*) is an approximate isomorphism, and

only requires that physical space be (approximately) locally Euclidean, which

is both true and something we have good reason to believe. Moreover, that the

three perpendicular bisectors of a triangle meet in a point is a property of

spherical and hyperbolic, as well as Euclidean, geometry.

Finally, knowledge of the truth-preservation of the logical steps used to

derive the mathematical belief from belief in the physical generalization and

(*) is no more problematic than any other form of logical knowledge. We

conclude that the described experiment does provide an inductive route to

knowledge of a geometric proposition.

This example and others like it do not prejudge the issue regarding any

conjecture of research interest. Kepler’s 1611 sphere-packing problem was

only resolved in 1998 by Thomas Hales, who confirmed that ‘shot-pile pack-

ing’ (in which the next layer of spheres is placed in the gaps between spheres in

the preceding layer) is the most efficient method. Although this fact is broadly

familiar to anyone who has ever repeatedly stacked oranges or cannonballs, I

am not claiming that grocers and artillerists have known for a long time what

Hales only recently proved.39

Exploiting physical knowledge to gain knowledge of mathematics is not

limited to geometry. Similar examples can plausibly be found in many other

areas of mathematics. One might count physical objects to obtain arithmetical

knowledge, exploiting both the existence of an isomorphism between some set

of physical objects and a finite initial segment of the natural numbers (the N

physical objects and the numbers {1, 2, . . . , N}) and empirical knowledge of

the physical objects. For example, one might empirically determine of some

physical objects: (1) that they are arranged in R rows and C columns, and (2)

that there are N of them. Exploiting the physical-to-arithmetical isomorphism

38 That is, the circle passing through the three feet of the perpendiculars from a vertex to the

opposite side, the three midpoints of the sides and the three midpoints of the line from a vertex to

the orthocentre.
39 Many physicists would take the view that some important mathematical facts are known for

physical reasons, and that proving them would be little more than a cleaning-up exercise. Here’s

Witten on Yang-Mills theory and the mass gap hypothesis:

A mathematical proof that quantum Yang-Mills theory exists in four dimensions

would be a milestone in coming to grips mathematically with twentieth century

theoretical physics. The reaction of physicists, however, would be that with the

renormalization group and asymptotic freedom, one already understands why this

theory exists, and that mathematicians have merely succeeded in supplying the e’s

and �’s. (Witten [2002], p. 25)
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just mentioned would constitute an empirical route to the pure-mathematical

fact that R�C¼N. Although this example gives us a quick argument for this

article’s main thesis, the rest of our discussion shows that this is not an isolated

instance, that we can have inductive knowledge of significant mathematical

generalizations, and that a good deal of knowledge of mathematics is already

inductive. Another empirical method might be to use coin tosses, die throws,

and Monte Carlo experiments or other simulation methods to obtain prob-

abilistic knowledge (about means and higher-order moments of various dis-

tributions say). At least in some such cases, knowledge of the appropriate

exact or approximate isomorphism combined with knowledge of the appro-

priate physical facts yields knowledge of the relevant mathematical

proposition.

8 Conclusion

Four arguments were presented for thinking that non-deductive knowledge of

mathematics is both attainable and attained. Moreover, we saw in Section 6

that some of what passes as deductive knowledge in set theory is in fact in-

ductive. To finish, some disclaimers are in order.

First, the possibility and actuality of inductive knowledge of mathematical

propositions is consistent with the claim that in the great majority of cases in

mathematics we only come to know that p when we find a proof of p. Second,

inductive knowledge may be more easily attained in some branches of math-

ematics than others. A task for a sequel is to examine arguments against the

possibility of inductive knowledge in specific areas or obtained using certain

techniques. Third, nothing we have said settles cases of current research inter-

est. That inductive knowledge of mathematics is possible creates the concep-

tual space for an argument to the effect that we already know GC or the

Riemann hypothesis on the basis of current evidence—but no such argument

has been mooted here. A natural next step would be to consider, for various

inductively supported mathematical conjectures p, whether p is in fact already

known on the basis of the available evidence, whether more evidence is

required before p can be inductively known, or whether for some reason p is

in principle inductively unknowable. Fourth, we are not denying the truism

that one of the fundamental aims of mathematics is proof. To be sure, math-

ematicians prefer deductive proof and actively look for it even in the presence

of overwhelming inductive evidence. As Frege ([1953], Section 2) put it, ‘It is in

the nature of mathematics always to prefer proof, where proof is possible, to

any confirmation by induction’. The ends of mathematical activity are not just

to increase knowledge, but to achieve it with (a certain kind of) proof.40

40 See (Rav [1999]) for more on the role of proof in mathematics.
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Nothing here directly challenges mathematics’ elevation of proof as an end in

itself, even if we recognize that proof sometimes starts from inductively sup-

ported principles. The aim of the mathematical game, so to speak, may be to

prove conjectures—and to do so in ways that suggest further interesting de-

velopments (though that is another story)—even if knowledge of some con-

jectures is non-deductively attainable.41

Finally, what are the implications for the practice of mathematics? One

natural reaction is that the possibility and indeed actuality of inductive know-

ledge of mathematics suggests that mathematics should be significantly

revised.42 To draw a parallel with physics, physics until the late nineteenth

century was a unified discipline. By the early twentieth century, the physics

community had split in two: those who speculated about theory (theoretical

physicists) and those who verified the speculations (experimental physicists).

Jaffe and Quinn ([1993]) urge that the bifurcation of mathematics into those

who offer rigorous proofs and others who offer less rigorous arguments

should continue, subject to significant provisos. Our conclusion could be

used as grist to this mill, to support further bifurcation in mathematics.

To flesh this out a little further, consider how widespread acceptance of my

argument might affect the type of propositions mathematicians try to prove.

Suppose that X and Y are propositions with inductive support but that X is

inductively known whereas Y isn’t. Other things being equal, mathematicians

might then focus on proving X or proving statements of the form ‘if X then p’

rather than on proving Y or statements conditional on Y. Mathematicians

need good open problems and granting bodies support good projects. The

difference between a proposition being known but not yet proved and its being

unknown (and a fortiori unproved) might in some cases be the difference

between a better and worse research project.

A more conservative reaction is also possible, however. Inductive know-

ledge of mathematics is attainable and indeed attained, as we have seen. But

perhaps the aims of collective mathematical epistemology are best served if the

community carries on thinking of proof as the only means of acquiring know-

ledge of mathematics. Perhaps more theorems are proved under the status

quo, better mathematicians trained, and qualitatively better work produced

overall than would be under an alternative epistemic regime. Perhaps the

health of mathematics might even depend on mathematicians wrongly and

dogmatically insisting that proof is the only means to knowledge of a math-

ematical proposition.

In sum, that knowledge of mathematics is achievable without proof does not

necessarily imply that mathematicians should place less emphasis on proof.

41 It is compatible with our argument that inductive knowledge of mathematics should not be

called mathematical knowledge, i.e. the sort of knowledge one aspires to in mathematics.
42 Echoing Fallis ([1997], p. 166).
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Whether or not our conclusion can be used to argue for a greater bifurcation

between deductive and so-called experimental mathematics depends on

broader features of collective mathematical epistemology, features merely

alluded to here. What should be clear at any rate is that much is at stake.
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