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WW
e mathematicians have handy ways of discovering
what stands a chance of being true. And we have a
range of different modes of evidence that help us

form these expectations; such as: analogies with things that
are indeed true, computations, special case justifications, etc.
They abound, these methods—explicitly formulated, or not.
They lead us, sometimes, to a mere hint of a possibility that a
mathematical statement might be plausible. They lead us,
other times, to substantially firm—even though not yet
justified—belief. They may lead us astray. Our end-game, of
course, is understanding, verification, clarification, and most
certainly: proof; truth, in short.

Consider the beginning game, though. With the word
‘‘plausible’’ in my title, you can guess that I’m a fan of George
Pólya’s classic Mathematics and Plausible Reasoning [MPR]. I
think that it is an important book for many reasons, but
mainly because Pólya is pointing to an activity that surely
takes up the majority of time and energy of anyone engaged
in thinking about mathematics, or in trying to work toward a
new piece of mathematics. Usually under limited knowledge
and much ignorance, often plagued by mistakes and mis-
conceptions, we wrestle with the analogies, inferences, and
expectations just alluded to; with rough estimates, with
partial patterns that hint at more substantial ones, with partial
consequences of hypotheses that are true—or seem true—
and therefore render it more likely that those hypotheses are
true, or at least should be provisionally conjectured, and
worked with. We make use of a whole inventory of different
rules-of-thumb, and somewhat-systematic heuristics that,
when they work, allow us to divine what is true.

Along with this, we are constantly assaying the level of
plausibility of any of these conceits and formulations that
float through our mind as we grapple. A three-level activity:

1. developing possibilities, hypotheses, expectations,
through a network of more or less confidence-
inspiring heuristics, and at the same time

2. assaying their plausibility, and at the same time
3. ‘‘shorting them,’’ to use (metaphorically) an infa-

mous financial term, i.e., working to disprove them,

is what establishes—at least for me, and I imagine for many
others—the three voices of the contrapuntal inner music that
we experience when we strive to comprehend some idea,
new to us, in mathematics (and more broadly, in anything).

How do we gain confidence in mathematical guesses,
before we actually prove them? In contrast to the main thrust
of Pólya’s text, without being pro- or pre-scriptive; that is,
without having a pedagogicalmission presuming to saywhat
one should not or should do, let us contemplate somewaysof
thinking that come up naturally when one is grappling with
judgments regarding plausibility in mathematics. Different
mathematicians will surely have different descriptions, and
conversations about these differences could be worthwhile.
Moreover, a psychologically oriented study of plausibility in
mathematics in the manner of Tversky and Kahneman might
also reveal interesting phenomena.

Here are three distinct modes of reasoning that provide
us with plausible inferences:

• reasoning from consequence,
• reasoning from randomness, and
• reasoning from analogy.

The first of these is largely a non-heuristic method, whereas
the other two are heuristic, the distinction being that a heu-
ristic method is one that helps us actually come up with
(possibly true, and interesting) statements, and gives us
reasons to think that they are plausible. In contrast, a non-
heuristic method may be of great use in shoring up our sense
that a statement is plausible once we have the statement in
mind, but is not particularly good at discovering such state-
ments for us. This three-part distinction is sometimes blurred
by the fact that all three can work surprisingly well together.
As an attempt to understand their interplay we will examine
possible motivations for Leonhard Euler to have come up
with a certain curious conjecture.

Reasoning from Consequence
This is captured by the maxim: If (A) implies true things we
gain confidence in (A).
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Depending upon the particular way it is cast, it is
sometimes referred to as Induction, or Experimental con-
firmation, or ‘‘Inferential fallacy.’’

Here is the example we’ll focus on. Pólya discusses the
following conjecture of Euler1:

Any number of the form 3 + 8n (for n positive) is the
sum of a square and the double of a prime2:

ðAÞ 3þ 8n ¼ a2 þ 2p:

This is still today just a conjecture, neither proven nor
disproven. How would you have first discovered such a
statement, as being potentially true? Having coming up
with the statement, how would you garner evidence for its
truth? How would you augment or diminish its level of
plausibility? That is, without actually proving it.

Of course, faced with such a problem, the first thing one
might—perhaps should—do is to test it numerically:

11 ¼ 12 þ 2 � 5
19 ¼ 32 þ 2 � 5
27 ¼ 12 þ 2 � 13

35 ¼ 12 þ 2 � 17 ¼ 32 þ 2 � 13 ¼ 52 þ 2 � 5
. . .

Now, Euler became interested in this conjecture—Pólya
explains—because by assuming it, Euler could prove:

Any number is a sum of three trigonal numbers:

ðBÞ n ¼ xðx þ 1Þ
2

þ yðy þ 1Þ
2

þ zðz þ 1Þ
2

;

a result he believed to be true and had been previously
interested in3. It is intriguing to follow Euler’s (curious, as I

think we will see) train of thought: what got him to think
that the (A) he was specifically interested in would be
made more plausible by virtue of its implying the (B)
above?4

This latter statement, (B), is a special case of Pierre de
Fermat’s polygonal number ‘‘theorem,’’ and even though
Euler believed (B) to be true, no (published) proof of it
existed at the time; (B) was proved later by Gauss in 1796
in Disquisitiones Arithmeticae (there is an often-quoted
line in his diary recording its discovery: ‘‘Eureka! num =
Dþ Dþ D’’).

By describing this turn of Euler’s thought, Pólya is
pointing to the following intricate zigzag regarding (A) and
(B). Euler showed ðAÞ ¼) ðBÞ and believed (B) to be true
(but hadn’t proved (B)). As a result, (A) was rendered more
believable; a kind of transport of plausibility:

We can take this diagram as a ‘‘plausibility’’ companion
to the classical modus ponens that has the following shape:

Each time a special case of a general statement is
something we believe to be true, we acquire a tiny bit more
confidence about that general statement. All the better, of
course, if that special case is known by us to be true. We
then enact, in our thought, this inverted modus ponens.

We might think of the first diagram above as one of the
mainstays of the calculus of plausibility, whereas modus
ponens is key in the calculus of logic. That there are vast
differences between these two brands of ‘‘calculus’’ is so
evident that it hardly needs to be said: in the calculus of
plausibility, our prior assessments are all-important. How
much (A) gains in plausibility, given that ðAÞ ¼) ðBÞ and
(B) holds, depends on judgments about the relevance of
(B) vis à vis (A). It is often influenced by our sense of
surprise that (B) is true, if we are, in fact, surprised by it.

In contrast, there is no judgment call necessary in the
calculus of logic; what you see is what you get: ðAÞ ¼) ðBÞ
plus (A) simply gives you (B).

In view of this distinction between the two modes of
thought, it is hardly strange that modifications of formula-
tions, which may be equivalent to each other in the
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1This is discussed as an example of Verification of a consequence: page 3 of Vol. II of Mathematics and Plausible Reasoning: Patterns of Plausible Inference. For the

original text, see the Afterword below.
2Euler could include n = 0 in his assertion, since he allowed 1 to be a prime—thereby siding with my father, who, whenever he wanted to get my goat, would playfully

ask me to defend my bizarre contention that the first prime is 2. Since I have removed 1 as prime from the initial conjecture conceived by Euler, I have ever-so-slightly

strengthened it. Note also that since the square of any odd number is congruent to 1 modulo 8, if the ‘‘sum of a square plus twice a prime’’ is 3 + 8n, the prime in

question must be congruent to 1 modulo 4. That is, Euler’s conjecture has nothing to do with primes congruent to 3 modulo 4, nor with the prime 2.
3Numbers of the form n(n + 1)/2 are called trigonal since they can be thought of as counting an array of points in the plane that have integral coordinates and form—

i.e., have as their convex closure—an isosceles right-angle triangle.
4A sketch of why (A) implies (B) is given in the Afterword below.
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calculus of logic, may become quite alien to each other in
the calculus of plausibility. A famous example of such a
modification is passage to the contrapositive, as in the
philosophical conundrum, due largely to Carl Gustav
Hempel. This is sometimes called Hempel’s paradox, or the
raven paradox, and starts with the observation that ‘‘logi-
cally speaking’’ the two statements: All ravens are black
and No non-black object is a raven are genuinely equiva-
lent; and yet the natural (reasoning from consequences)
way of collecting empirical evidence for the first statement
is to find raven after raven and check whether or not they
are black, whereas the corresponding strategy for the sec-
ond formulation is to look for objects that aren’t black, and
then check that they aren’t ravens.

Now the first strategy to gain confidence in the assertion
seems quixotic perhaps, but vaguely sane to us, whereas
the second is utterly ludicrous. The essence of this ‘‘para-
dox,’’ as far as I understand it, is that even though the two
statements above are equivalent from the vantage-point of
the calculus of logic, they present quite different natural
strategies for ‘‘reasoning from consequence.’’

A typical mathematical analogue to Hempel’s conun-
drum—which sheds some light on the initial issue— might
be the comparison of the following two modes of building
confidence in the Riemann hypothesis, which—formulated
in the traditional way—asserts (still conjecturally, of course)
that all the zeroes of the Riemann zeta-function, fðsÞ; either
lie on the real line (in which case they occur at negative
even integer values of s: these are called the trivial zeroes of
fðsÞ since the question of vanishing of the zeta function on
the real line is known), or else the zeroes lie on the line
Re(s) = 1/2 in the complex plane. The Hempel conun-
drum, given this formulation, would be to note that the
natural reasoning from consequence mode of collecting
evidence for the hypothesis as stated, and of its contra-
positive, would be, respectively,

• Find a (nontrivial) zero of the Riemann f-function and
check that it actually lies on the line ReðsÞ ¼ 1

2; or
• find a point s0 in the complex plane that (is not a trivial zero

and) is off the line ReðsÞ ¼ 1
2; and check that fðs0Þ 6¼ 0:

There are a few things to discuss, even with regard to
this somewhat frivolous example. As for the second strat-
egy above, if we were to choose an s0 outside the critical
strip5, we would learn absolutely nothing we hadn’t
known—since we already know that all the nontrivial
zeroes lie in the critical strip. Even keeping to the critical
strip, however, we do have the prior knowledge that the set
of zeroes is discrete, so the chances of hitting on a zero by a
random choice of a point is—well—zero. In contrast, the
delicacy of the first strategy—requiring something to lie on
a given line—is a very demanding test.

In brief, this intricate network of ‘‘prior assessments’’
controls the calculus of plausibility related to these strate-
gies. What makes reasoning from consequence so multi-
stranded is illustrated by this example of the Riemann

Hypothesis, where there are many equivalent formulations
of this very same hypothesis, and each formulation pro-
vides us with yet a different natural (reasoning from
consequences) way of collecting empirical evidence for it.

For example, one of the standard equivalent formula-
tions, which is also one of the major reasons for being
interested in the conjecture in the first place, is the good
approximation implied by the Riemann Hypothesis for the
function p(X), the number of primes less than or equal to
X. Specifically, if LiðXÞ :¼

R X

2
dt

log t then the Riemann
Hypothesis is equivalent to the estimate

jLiðXÞ � pðXÞj\X
1
2þ�

for any positive � and X sufficiently large (how large is
‘‘sufficiently large’’ depends on �). With this formulation in
mind, the more straightforward way to ‘‘reason from con-
sequences’’ would be to compute p(10n) and Li(10n) for
various n’s and compare.

Reasoning from consequences comes in two forms, one
that might be called top-down, and the other bottom-up.
The top-down form is where you firmly have an A in mind,
explicitly formulated, and you want to assess its plausibility
by finding B’s that are provable and are implied by this A,
thereby shoring up your confidence in the truth of A. For
example, in our discussion of the Euler conjecture, we
recommended making numerical calculations, e.g.,
11 ¼ 12 þ 2 � 5, etc., as a sequence of confidence-builders.
This, then, would be an example of the top-down version
of reasoning from consequence.

One gambit that seems to fit into this top-down frame-
work is when you have an A as your goal, and you manage
to prove a B, which is a special case of A. But, there are
instances where this B, far from rendering A more plausi-
ble, may very well be either neutral or negative for that
end; for, depending upon the case at hand, it might be
relevant to ask the following disturbing question: how does
it happen that your proof of B actually breaks down in the
more general context of A, and could that be more of a hint
that something goes wrong, rather than right, in that gen-
eral context?

An illustration of this is nicely given by another one of
Euler’s conjectures; namely (1766) that all imbedded
polyhedra are (infinitesimally) rigid. Euler’s work showing
that all imbedded convex polyhedra are rigid might well be
considered evidence for this conjecture. Or, it could go the
other way. That is, was the convexity condition an
unnecessary crutch making Euler’s proof easier? Or was its
requirement in the method of proof a sharp indication that
something might go wrong without it? It took 212 years for
a (rather beautiful and somewhat shocking) counterexam-
ple to the general conjecture to be constructed (see [C2],
[C1])—showing, in fact, that it was the latter.

The bottom-up form is where you don’t have any gen-
eral A in mind, but do have a potential B that you know to
be true, or more usually, you have a number of potential
B’s and you are looking for a larger framework, an A, that

5The (open) critical strip in the complex plane is the vertical strip {z = x + iy | - 1 \ x \ + 1}, the region on which the behavior of the Riemann zeta-function is–to put

it mildly–somewhat problematic.
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implies this B, or these B’s. An example of this is given by
Pólya’s discussion regarding Euler’s Conjecture, discussed
above. For Pólya tells us that Euler ‘‘wanted’’ the B (any
number is a sum of three trigonal numbers) and, in his
quest for it, he formulated an A (his conjecture about twice
primes) because it would imply his B. Did Euler, then,
regard his A as more plausible than his B?

This type of route, a ‘‘bottom-up reasoning from conse-
quence,’’ is also a standard strategy for developing
demonstrations: we often know what we want to prove, and
we ‘‘work backwards,’’ so to speak, in that we formulate things
that aremoreandmoreplausible,moreaccessible, that imply it.

One might think of reasoning from consequences as being
in the spirit of what is usually called scientific induction, or at
least the version of scientific induction that makes sense
within the context of mathematical practice. There are big
differences, though, the biggest difference being that scien-
tific induction is saturated, either explicitly or implicitly, with
issues of causality, that ‘‘habit of thought,’’ as Hume referred
to it. Now the closest thing to ‘‘causality’’ (as viewed in the
empirical sciences) that occurs in the mathematical scheme
of things is ‘‘logical implication.’’ But these concepts, ‘‘cau-
sality’’ and ‘‘logical implication’’ each have elements that are
quite foreign to the other, and they each have their own
idiosyncratic relationship to time.

Let us return once more to Pólya’s example: Euler’s
Conjecture that any number of the form 3 + 8n is a square
plus twice a prime. Even though Euler might have achieved
a sense of its plausibility from what we’re calling reasoning
from consequences, there is another plausibility route for
this same conjecture. One might come to believe it—or at
least something qualitatively like it—via a heuristic method
that proposes that once one takes account of all the known
constraints, the data are random.

Reasoning from Randomness
As mentioned above, this mode of reasoning can be cap-
tured by the following sentiment:

We know all the relevant systematic constraints in the
phenomena that we are currently studying, and . . . the
rest is random6.

This is somewhat hubristic, but it is a common, and perfectly
natural, way of thinking; it is very often a powerful method
that leads to formulating hypotheses that—if not always
true—at least often represent ‘‘current best guesses.’’ This
method, in contrast to ‘‘reasoning from consequences,’’ is
genuinely heuristic: when it is applicable, it does indeed
present us with fairly precise formulations.

Here is a simple example of a problem that will illustrate the
power and the essential limitations of this hubristic method. If
a [1 is an integer, by a perfect a-th power we mean an
integer of the form ua where u C 1 is a whole number.

Let a, b, c be a triple of positive integers. Consider the
diophantine equation

Aþ B ¼ C

where A is allowed to be any perfect a-th power, B a
perfect b-th power and C a perfect c-th power. (So, for
example, if a = b = c = 2 we are considering Pythag-
orean triples.) Let X be a large positive integer, and
N(X) be the number of solutions of our diophantine
equation with C B X. What can we say about the
behavior of N(X) as a function of the bound X?

And here is a rough argument that might lead you to some
kind of conjecture regarding this problem. It is in a genre of
speculation that almost all mathematicians must have
engaged in, at one time or another, in the vocabulary of
their fields of interest. (For simplicity I will ignore positive
constants independent of X that arise in our error estimates
either as multiplicative factors or simply as constants.) Here
are possible steps in our deliberation:

1. Following the dictum for the method, as described above,
we want to think of the two sides, A + B and C, of our
diophantine problem:

Aþ B ¼ C

as being ‘‘random,’’ except, of course, for all our prior
knowledge about them. So we must take an inventory of
what we actually know:

2. Is there any systematic structure to the collection of
solutions? Here the only thing that comes to my mind is
that if d is the least common multiple of a, b, c and
(A, B, C) is a solution to our problem, i.e., a contributor
to the number N(X), then for every integer

k ¼ 1; 2; 3; . . .
�
X=CÞ

1
d

we have that

ðkd � A; kd � B; kd � CÞ

is also a solution. Here, and elsewhere, the notation
k = 1,2,3,. . .,T will mean that k is assumed to run
through all integers from 1 to the largest integer not
exceeding T.

3. Hypothesizing the systematic structure away: There are
many ways of dealing with systematic structure, and one
way is simply to hypothesize it away! So let us change
our problem, and ask questions about the behavior of
the function

NoðXÞ :¼ the number of relatively prime triples

ðA;B;CÞ that are solutions to our problem.

Of course this will affect the collection of (A, B, C)’s that
are in the game, but as we will see, not by much.

4. Formulating the probabilistic event: We choose our
A and B at random, subject to the conditions that they
are relatively prime, perfect a-th and b-th powers
respectively, and are both \ X.
We choose C at random subject to the condition that it is
a perfect c-th power and is \X.

6We form the [measure] space comprising the possible outcomes we are interested in, subject to all constraints that we happen to know of, and then we put what we

consider to be some kind of ‘‘even-handed’’ probability measure on this space. This is sometimes tagged as an application of the principle of insufficient reason.
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We get a ‘‘hit,’’ i.e., a solution to A + B = C, every time
we get that the number A + B - C is zero. But—and
this is the big assumption—imagining A + B - C to be
a number randomly roaming through the allowable
range that is roughly of size X as we run through our
allowable triples (A, B, C)—the probability that any
A + B - C is zero is roughly X-1.
In sum, if things are as random as we blithely imagined,
the expectation of getting a ‘‘hit’’ from any of these
single events is—ignoring constants—roughly 1/X.

5. Counting the number of times we are allowed to play the
above game:
The rough number of all conceivable values of A that
might appear in a solution in the range B X is X

1
a and

similarly for B and C where we get X
1
b; and

X
1
c; respectively: We now need to confront the require-

ment that our three numbers (equivalently: any two of
them) are relatively prime. This—given the roughness of
our calculation—we can ignore, the reason for which I
will sketch in this footnote7.

So we do have (roughly)

X
1
a � X 1

b � X 1
c ¼ X

1
aþ1

bþ1
c

shots at this. So the expected number of successes will be 1
X

times X
1
aþ1

bþ 1
c; or

X
1
aþ1

bþ1
c� 1:

To blur things a bit, given that we have been arguing quite
naı̈vely, we might conjecture

CONJECTURE 1 When

1

a
þ 1

b
þ 1

c
[ 1;

we should get

X
1
aþ1

bþ1
c�1��\NoðXÞ\X

1
aþ1

bþ1
c�1þ�

for any �[ 0; and for X [[ 0 (with the implied constant in
‘‘[[ ’’ depending on �).

When
1

a
þ 1

b
þ 1

c
\1;

the above estimate would give us a decreasing number of
hits as X tends to infinity; which doesn’t make much sense
at all, but we interpret it as suggesting

CONJECTURE 2 Fixing exponents a, b, c satisfying the

inequality 1
aþ 1

bþ 1
c\1; there are only finitely many solu-

tions to the diophantine problem U a + V b = W c with

(U, V, W) relatively prime positive numbers.

We see the classical Last Theorem of Fermat as giving a
good deal more precise information than the above con-
jecture for the cases a = b = c [ 3. This illustrates the
structural shortcoming of this probabilistic heuristic: it is
quintessentially probabilistic, and (it alone) could not get
one to guess as precise a conjecture as Fermat’s Last The-
orem, even though it might offer, as plausible guess, some
affirmation of the qualitative aspect of that Theorem8.

The discussion above in more general format motivates
the work of Masser and Oesterlé with their wonderful,
sweeping, ABC conjecture; see [ABC]9.

In fact, if you soften the definition of perfect a-th power
in the following way, the very same heuristic discussion
above leads to conjectures of the same type as those above,
and these are more in the style of the ABC conjecture.
Namely, for a real positive number a, say that an integer
A > 1 is of power C a if

a� log A
P

pjA log p

Note that if A is a perfect a-th power it is also of ‘‘power C a.’’
Let N1(X) be the number of solutions of the equation

Aþ B ¼ C

where A, B, C are positive integers of powers C a, C b,
and C c, respectively. Similar heuristic reasoning as above
yields the conjectures

CONJECTURE 3 If

1

a
þ 1

b
þ 1

c
[ 1;

then
X

1
aþ1

bþ1
c�1��\N1ðXÞ\X

1
aþ1

bþ1
c�1þ�

for any �[ 0:

CONJECTURE 4 Fixing exponents a, b, c satisfying the

inequality 1
aþ 1

bþ 1
c\1; there are only finitely many solu-

tions to the diophantine problem

Aþ B ¼ C

where A, B, C are relatively prime positive numbers of

powers C a, C b, and C c, respectively.

Correlation, Non-correlation, and Structure
The conjectures in the preceding section can be framed—in
general terms—as motivated by the sentiment that rela-
tionships like

• A + B = C—or broadly put: the operation of addition—
and properties such as

7The possible choices of A are the a-th powers of integers u : = 1,2,3,. . .;X
1
a and for each of these choices we must choose B’s which are the b-th power of v:=1,2,3,. . .;X

1
b that

are relatively prime to u. So, for each prime p we must throw out all pairs (u = puo, v = pvo) in our range, i.e. roughly p�2X
1
aþ1

b pairs. Overestimating, then, we throw out at most

X

p prime

p�2

 !

� X1
aþ1

b

pairs. Since
P

p prime p-2) converges (it is 0:452247. . .) we absorb this into our constants, and can ignore it.
8Left out of the above discussion are cases of equality 1

aþ 1
bþ 1

c ¼ 1; namely: (3, 3, 3), (2, 3, 6), (2, 4, 4) and their permutations; each of them has an interesting story.
9Shinichi Mochizuki has recently announced a proof of the ABC conjecture. For a single source on the web that gives succinctly all the references to Mochizuki’s posted

articles related to this, and some commentary, see http://michaelnielsen.org/polymath1/index.php?title=ABC_conjecture.
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• powerfulness—or broadly put: multiplicative properties

are statistically uncorrelated, at least once one takes into
account certain elementary and evident correlations. Com-
pare this with a structural theorem such as the Pythagorean
Theorem, or UFD for Z. And yet, there is often a dance
between the ‘‘non-correlational’’ and the ‘‘structural.’’ For
often we find that proving some structural theorem turns
out to be the right way to prove a non-correlational
property.

Every mathematician must have some favorite applica-
tions of reasoning from randomness. In number theory, my
current favorite is the Cohen-Lenstra heuristic that gives us
guesses for the average values of ideal class groups over
various ranges of number fields10. This is obtained by
imagining the thought-experiment of fabricating an ideal
class group by a random process in terms of its generators
and relations, subject to the prior constraints that reflect
everything we know about the manner in which the ideal
class group appears. So far, the Cohen-Lenstra heuristics
seem to check out with numerical computations, and these
heuristics are regarded as sufficiently plausible, that they
have a firm place in the toolkit of conjectures that are
helpful—even though not yet proven—guides for reflec-
tions and experiments in that branch of number theory.

The question: ‘‘has all the relevant coherent structure of
the phenomena been taken into account?’’ hovers over
every plausibility argument in this reasoning from ran-
domness category. A famous conjecture in number theory
due to Emil Artin predicts the density of the set of prime
numbers p relative to which a given integer A (not 0 or ±1)
is a primitive root11. Clearly, for A to be a primitive root
mod p, there cannot be a prime number q dividing p - 1
such that A

p�1
q � 1 modulo p. Artin initially tallied up the

probabilities governing this behavior, and—assuming that
these requirements are independent for different primes
q—came up with a prospective density for this problem.
Further reflection made it clear to him that there were
indeed some dependencies (related to the prime 2)
between these conditions, requiring a change of conjec-
ture. For details about this see the Preface (written by Serge
Lang and John Tate) to The Collected Papers of Emil Artin,
Addison-Wesley (1965).

Let us return to the conjecture of Euler regarding num-
bers of the form a square plus twice a prime congruent to 1
mod 4 and note that if the conjecture is true, then, in some
natural sense, at least one eighth of all positive numbers are
of that form (i.e., any number congruent to 3 mod 8 is of
that form). What does the probabilistic heuristic have to say
about this conjecture?

Well, the number of squares\X is on the order of X1/2,
and—by the prime number theorem—the number of inte-
gers that are twice a prime and \ X is on the order of

X/log(X) as X tends to infinity (recall we are ignoring
positive factors that are constant).

So (grossly, ignoring constants, as X tends to infinity) the
number NðXÞ of pairs of the form

(square + twice a prime congruent to 1 mod 4)

with sum \ X is the product

NðXÞ ¼ X1=2 � X= logðXÞ ¼ X3=2= logðXÞ:

That is, ignoring constants,

NðXÞ[ X

for large X. Now the squares and twice primes have nothing
to do with one another except for the relationship modulo
8, as far as we know; so the probabilistic heuristic might
prompt us to make the following conjecture:

CONJECTURE 5 The set of integers of the form a square

plus twice a prime congruent to 1 mod 4 is of positive

density in the set of all positive integers.

But one thing to notice is that, when this probabilistic
heuristic suggests such a conjecture it often suggests much
more at the same time. For example, by the same reasoning
as we have just made, if we let f(x) be any fixed non-
constant polynomial with positive integral coefficients and
let n be any positive number, it is just as plausible to make
the conjecture that the set of numbers of the form

f ðaÞ þ n � p;

as a ranges through all positive integers and p through all
primes, is of positive density.

Reasoning from Analogy
The fabric of all our thought is woven by the strands of
analogy—conscious ones as well as unconscious ones—
and is decorated by those snap-analogies, metaphors. So it
is no wonder that mathematical thought is saturated with,
and very much colored by, analogies of all sorts.

Here, then, are two somewhat different brands of analogies:
Analogy by expansion is where one has a concept, or a

constellation of concepts, or a theory, and one wants to
expand the reach of these concepts, retaining their struc-
ture as some sort of template. This is often referred to
simply as ‘‘generalization,’’ but the term ‘‘generalization’’ is
more useful if it is allowed to be a looser descriptive,
including, as well, some of the other types of analogical
operations that we will consider. Analogy by expansion
may have the appearance, after the fact, of being a perfectly
natural ‘‘analytic continuation,’’ so to speak, of a concept—
such as the embracing of zero and negative numbers as an
expansion of the whole numbers, and from there to

10cf. [C-L]. The ideal class group H of the ring of integers O of a number field is the group of fractional ideals of O modulo the subgroup of principal fractional ideals.

This H is a finite abelian group, trivial if and only if O is a principal ideal domain. Equivalently, H measures the manner in which O possesses, or fails to possess, unique

factorization. That is, H vanishes if and only if any (nonzero) non-unit in O may be expressed uniquely as a product of prime elements—the ‘‘uniqueness’’ being up to

the order of the factors and multiplication of those factors by units.
11A primitive root modulo a prime number p is an integer prime to p with the property that its powers run through all nonzero congruence classes modulo p. Any prime

number possesses a primitive root.
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rational numbers, etc. BUT, the act itself may, at the time
and even somewhat afterward, have the shock value of a
fundamental change. Even though Grothendieck topolo-
gies are half a century old, and are (after you’ve learned the
theory!) an utterly direct expansion of the more classical
notion of topology—an expansion that gets to the essence
of that concept—there is still a thrill in its radical refiguring
of what it means to be a topology.

There is, however, a more modest version of analogy
by expansion that we all constantly do: starting from a
(B) that we either know to be true, or at least firmly
believe to be true, we look around for improvements (A)
that are just a bit more general than (B), for which we
can show that

ðAÞ ¼) ðBÞ:

Even relatively small improvements, (A)’s that are no more
than ðBÞ þ �; so to speak, are fair game. Subject to no
palpable counter-indication, the proved implication con-
fers a modicum of belief in ðBÞ þ �: This is in the style of
Amazon’s If you like X you’ll like Y, but here takes the form:
If you believe (B) why don’t you believe ðBÞ þ � ? As I hope
will be clear from the Afterword below, it is this belief-
expansion attitude that is also a plausible account of how
Euler came to his Conjecture.

Analogy as ‘‘Rosetta stone’’ is where one subject, or
branch of a subject—with its specific vocabulary—is per-
ceived as representing something of a model useful to
predict what might be happening in another subject, or
branch, this latter subject often having quite different
vocabulary, axioms, and general set-up.

Here is André Weil’s famous paragraph on analogy—
expressing a sentiment yoking knowledge with indifference
that I firmly disagree with; nevertheless I keep quoting and
re-quoting it:

Nothing is more fruitful—all mathematicians know it—
than those obscure analogies, those disturbing reflec-
tions of one theory on another; those furtive caresses,
those inexplicable discords; nothing also gives more
pleasure to the researcher. The day comes when this
illusion dissolves: the presentiment turns into certainty;
the yoked theories reveal their common source before
disappearing. As the Gita teaches, one achieves knowl-
edge and indifference at the same time.

What has been shown to be true, time after time, in the
development of mathematics is that ‘‘yoked theories reveal
their common source.’’ That is, analogies between two
different theories are often thefirst indication that there lies in
the future a more embracing context that allows each of the
theories currently yoked by analogy to be simply special
instances of the larger picture, their vocabulary merging.

Examples are easy to come by, some of vast importance
to the nature of our subject such as the grand analogy
between algebra and geometry. In fact, the trace of old
mergers of distinct viewpoints can be seen in the

combination words that are now titles of basic subjects,
such as Algebraic Topology, Algebraic Geometry, Geo-
metric Algebra (which is different, of course),
Combinatorial Group Theory, etc.

In recent years, we have witnessed the extraordinary
predictive power of analogies that link physics with
mathematics—specifically: string theory with aspects of
algebraic geometry—these coming from various symme-
tries and dualities first conceived in physics12.

But physics (and physical intuition, broadly interpreted)
has been offering mathematics an ‘‘analogical laboratory’’
with predictions that are generally on the mark, for mil-
lennia. One need only turn to Archimedes’s treatise On the
quadrature of the parabola where he invokes his
mechanical method—which he does not regard as rigor-
ous!—to compute the ratio of the area of a segment of a
parabola to the area of a triangle that he constructs based
on the geometry of that parabolic segment. Archimedes
hints that he had also given what he called a geometric
(rather than ‘‘mechanical’’) demonstration of this same
quadrature, a demonstration that he felt was rigorous.
Archimedes performs this mechanical method by laminat-
ing his parabolic segment, representing it as a continuum of
linear cuts, and making a corresponding lamination of the
triangle to which he is comparing his parabolic segment.
Then, in effect, he ‘‘weighs’’ corresponding linear cuts (as if
they had a ‘‘weight’’ in proportion to their length) to obtain
the result that the ‘‘weight’’ of his triangle is a simple
multiple of the weight of his parabolic segment (see [QP])).

Now if you suspect that this is an argument that, if
correct, could easily be affirmed by calculus, you are right;
but in Archimedes’s conception, The Method works on the
strength of a correctly guiding analogy that combines
previously disparate intuitions that had originated in
somewhat different domains: the experience one has with a
certain weighing apparatus and the intuition one has via
Euclidean geometry.

Summary So Far
I have sketched–or at least hinted at—three quite different
engines of plausibility: reasoning from consequences, by
randomness, and by analogy.

Reasoning from consequences is the backbone of the
inductive method. Its shortcoming is that in practicing this
method, we often aren’t clear whether or not the conse-
quences that we have amassed in support of a general
assertion are telling consequences. In number theory, for
example, there are general conjectures for which an
immense amount of numerical data have been collected
that actually do not (at least significantly) support the
general assertion, and in fact would naı̈vely suggest a dif-
ferent qualitative guess—and yet we still (at least currently)
believe the general conjectures. For an example of this see
[AR].

Reasoning by randomness has the danger that we may
not be taking into consideration all systematic behavior

12The mere extent and number of examples here are staggering, but allow me to mention just one of them: on the basis of what one might term a physical analogy

Candelas, de la Ossa, Green (and others) conjectured a general formula for the number of rational curves of any degree on a generic quintic threefold; this has

eventually been established; cf. [CK].
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relevant to the phenomena we are studying. Nevertheless it
has two great advantages: it is a starting position, a best
current guess, worth contemplating to get what might be
the lay of the land, and even if not accurate, it is often an
analysis that separates the supposed random aspects
(which may show up as ‘‘error terms’’) from the more
regular aspects (which may show up as ‘‘dominant terms’’)
of the phenomena. In number theory, those error terms
may then also have profound structure (e.g., see [FME])).

But reasoning by analogy is the keystone: it is present in
much (perhaps all) daily mathematical thought, and is also
often the inspiration behind some of the major long-range
projects in mathematics. And André Weil was right when he
said: ‘‘nothing also gives more pleasure to the researcher.’’

In number theory the Langlands Program13 is one of the
grand analogies—currently being vigorously pursued—
connecting representation theory, algebraic geometry, and
arithmetic.

The analogy between number fields and function-fields
of one variable over finite fields is a more elementary, and
older example. This analogy views the two types of field as
a single entity (called a global field) that is treatable in a
unified way14.

Variants of ‘‘Plausible’’
Euler might have come to believe his conjecture from a mix
of the three brands of plausible reasoning that I labeled as
separate categories at the beginning of my essay (conse-
quences, randomness, and analogy). My feeling is that if
we think through the history of any of our personal
involvement with any mathematical issue that is important
to us, all resources available to us will be playing some role
in the proceedings. The way these resources interact may
be complex, and may be key.

And sometimes plausibility itself isn’t germane. Thinking
about possible mathematical strategies, it is as natural to
focus our attention on issues that are useful wedges, rather
than plausible formulations. Useful for the energy they
generate, and not necessarily for their truth-value, if truth is
even relevant to them. Hillbert’s Tenth problem—as he
originally formulated it— is an example. What we gauge as
‘‘plausible’’ about those wedges is that it may be plausible
that we will profit by following their lead for a while. Our
fealty to these plausible formulations is provisional, meta-
stable, and subject to adjustment, somewhat like the pro-
visional priors of Bayesian analyses.

It can happen that our ideas are clarified by specifically
formulating a particular yes or no question whose answer
we can’t guess; and yet the mere fact that we don’t have
sufficient experience to even make a strongly believed
guess focuses the mind (a bit)15.

Often our thoughts are peppered with fragments of pos-
sible patterns, possible formulations, and—even more
important—possible organizing principles, for which truth is
not yet even meaningful, for their truth will depend on their
context, and that context is not yet fully determined, or fully
formed. There are some organizing principles the truth of
which is implicitly stipulated, as the lawyers say (meaning that
we agree without any further discussion to accept the prin-
ciple), these principles being of use to us as a guide to finding
the context within which they are valid. In Physics, conser-
vation of energy served as such a guiding principle: of course
energy is to be conserved; and if one comes up with a situ-
ation where it seems not to be, one doesn’t throw away the
principle, but rather one revises one’s idea of what energy is.

To illustrate this type of phenomenon with a celebrated
mathematical example, consider the Hilbert-Pólya quest for
a Hilbert space and Hermitian operator with characteristic
series equal, after appropriate normalization and correc-
tion, to the Riemann zeta-function. The point here is that if
such a Hilbert space and operator could be found, the
Riemann hypothesis would follow. Conversely, if the Rie-
mann hypothesis is valid, we can concoct—merely
formally—some such Hilbert-Pólya model. So here plausi-
bility simply isn’t the issue; it is rather a question of whether
or not a contemplation of this quest has some utility16.

The Hilbert-Pólya model has already shown its useful-
ness, if only because it invites us to think about the zeroes
of fðsÞ as related to the zeroes of analogous zeta-functions
of algebraic varieties over finite fields, these being the
eigenvalues of a linear operator; in another direction it
connects with Iwasawa’s Main Conjecture (which is
proved, and) which identifies the zeroes of the p-adic zeta-
function (companions to Riemann’s fðsÞ) with eigenvalues
of natural operators; and—going in a completely different
direction—the Hilbert-Pólya model invites comparison of
the zeroes of fðsÞ with eigenvalues of random matrices. To
be sure, if it also inspires a proof of the Riemann Hypoth-
esis, that would be its crowning utility.

We have all heard claims, or we have believed our-
selves, that some formulation is plausible, and possibly
true—or at the very least, useful—because the formulation

13For an introduction to the underlying ideas in the Langlands Program, see [G].
14But, as with all great analogies, its imperfections sparkle, raising questions that may lead to future theories, far deeper than the ones we currently are at home with:

• What is the full story that connects the finite primes of a number field to its Archimedean primes, its ‘‘primes at infinity’’?

• What is the full analogue in the context of number fields of the genus of a function field (of one variable) over a finite field?

• Is there an analogue, in the context of number fields, of the product of the smooth projective models of function fields (of one variable) over a finite field?

15The more contemporary versions of Hilbert’s Tenth Problem—e.g., as formulated over Q—is one such question: is there a finite algorithm that tells, for any given

system of polynomial equations in many variables over the rational numbers, whether it has a rational solution? Hilbert’s Tenth Problem over Z for polynomials of degree

3 in many variables is another such question. Hilbert’s Tenth Problem over Z has been settled affirmatively for polynomials of degree B 2 by Siegel, and negatively for

polynomials of degree 4 (or higher) by Matjasevic; but degree 3 is a vastly different world, and although there has been an immensely concentrated effort to understand

this world, with a rich theory emerging from this, a further step in our knowledge would be represented by our having, at least, a firm consensus for a guess—just a

guess—about the outcome in degree 3 of the algorithmic problem posed by Hilbert.
16Plausibility giving way to utility suggests that we’ve slipped into a bit of William James’s pragmatism.
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strikes one as beautiful. What do we make of this? And
what canwemake of the line of Keats thatwe all know, or the
famous comment of Einstein to Hans Reichenbach (that
Einstein knew, even before the solar eclipse of 1918 sup-
ported his general theory of relativity, that the theory must be
true because it was so beautiful), or all the other instances of
what might be called the persuasive power of beauty? Each
time we seem under the sway of such a link (beauty–truth)—
each time we have such an exemplar—the details of its
specific setting are crucial to understand, if we wish to get to
the bottom of its force. Isn’t it usually the case that it is some
aspect of the truth of the thing that impresses its beauty onus,
andnot theotherway around; thebeauty is a consequenceof
the sheer clarifying nature of the thought. But sometimes the
beautiful-therefore-persuasive formulation comes to us as a
guiding principle which establishes a landscape, a view-
point, a vocabulary, all of which might mold around
whatever later facts connect to it; and is less a specific
statement whose truth or falsity can be checked.

Afterword: Euler’s Conjecture Implies Gauss’s
‘‘Eureka Theorem’’
Recall that we want to assume Euler’s Conjecture that any
integer n C 0 occurs in an equation (A) with a an integer
and p a prime number,

ðAÞ 3þ 8n ¼ a2 þ 2p;

and prove what will eventually be Gauss’s Theorem; i.e.,
that any integer n C 0 is expressible as a sum of three
trigonal numbers. The proof of this is given in a series of
steps and hints.

1. For any equation of the form (A) above, the number a is
odd, and p is of the form 4t + 1. (Proof: work the
equation (A) modulo 8.)

2. If the prime p occurs in an equation of the form (A) then
p is expressible as a sum of two squares:

p ¼ u2 þ v2:

(This is Fermat’s Theorem.)
3. If any number n C 0 occurs in an equation of the form (A)

then any number n C 0 occurs in an equation of the form

ðA0Þ 3þ 8n ¼ a2 þ b2 þ c2

with a, b, c odd integers. (Proof: If p = u2 + v2 take

b :¼ uþ v; and c :¼ u� v;

then work the equation (A0) modulo 8 to show oddness
of a, b, c.) As usual, refer to the proposition that asserts
the above fact for any n C 0 as (A0).

4. Write

a ¼ 2x þ 1; b ¼ 2y þ 1; c ¼ 2z þ 1;

for x, y, z integers; compute to get:

ðBÞ n ¼ xðx þ 1Þ
2

þ yðy þ 1Þ
2

þ zðz þ 1Þ
2

;

and going the other way, show that ðBÞ ¼) ðA0Þ:

5. Conclude that ðAÞ ¼) ðA0Þ () ðBÞ:
We can now speculate more exactly about Euler’s

plausibility thinking here. Euler believed (B), and surely
knew that (B) is logically equivalent to (A0). So, of course,
he believed (A0), and he knew that the passage from (A) to
(A0) consisted in nothing more than replacing, in these
contexts,

• the set of numbers that are of the form 2u2 + 2v2 such
that u2 + v2 is an odd prime number by

• the set of numbers that are of the form 2u2 + 2v2 such
that u2 + v2 is an odd number.

I am thankful to William Dunham who sent me this
portion of text where Euler formulates this conjecture, the
Euler Archive (E 566), as presented to the St. Petersburg
Academy on 19 October 1775. Euler muses quocirca
quaestio huc redit: whether any number of the form
8N + 3 can be separated into two parts, one an odd square
and the other the double of a prime of the form 4n + 1.

So, perhaps, his thoughts went as follows. Fermat has
assured us (without revealing his proof) that we get a
correct proposition if we allow u2 + v2 to run through all
odd numbers of that form. Can we sharpen things to get a
better (and still correct!) proposition by requiring u2 + v2

to run only through all odd prime numbers of that form?
What a subtle guess, hinting at an inquiry concerning the
density of primes; this is especially striking since Euler did
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not have the advantage of Gauss’s guesses approximating
p(X); nor did he have any serious results giving relevant
estimates.

And viewed from this perspective, it would seem that
the mode of thought Euler is employing is a straightforward
sharpening of a known result, a form of analogy by
expansion.

In summary, all modes of reasoning that I listed might
have contributed to the motivation for Euler’s surmise.
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