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The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,

Develop or reading. Think of
General Theories Interesting
General theories must be QueSti ons

consistent with most or all
available data and with other
current theories.

Why does that
pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...
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The ladder of Causation
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| (3. COUNTERFACTUALS

W ACTIVITY: Imagining, Retrospection, Understanding

kN l QUESTIONS:  What if 1 had done ...?2 Why?

= =} (Was 1t X that caused Y? What i1f X had not
. IA_\,G IN I N'Gi ‘ '“ A occurred? What if T had acted differently?)

EXAMPLES:  Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if T had not smoked for the
last 2 years?

[ 2. INTERVENTION
ACTIVITY: Doing, Intervening

QUESTIONS: What if 1do ...7 How?

’ )" | :—;:/_:;Db:@\_”ST_G‘ _j "/[ ;. : _ (What would Y be if T do X?

A= l { A How can I make Y happen?)
4

—

EXAMPLES:  If I take aspirin, will my headache be cured?
What if we ban cigarettes?

1. ASSOCIATION

ACTIVITY:  Seeing, Observing

QUESTIONS: What if I see ...?

(How are the vanables related?

How would seeing X change my belief in Y?)

EXAMPLES:  What does a symptom tell me about a disease?
What does a survey tell us about the
election results?

M HAREL

FIGURE 1.2. The Ladder of Causation, with representative organisms at
each level. Most animals, as well as present-day learning machines, are on
the first rung, learning from association. Tool users, such as early humans,
are on the second rung if they act by planning and not merely by imitation.
We can also use experiments to learn the effects of interventions, and pre-
sumably this is how babies acquire much of their causal knowledge. Coun-
terfactual learners, on the top rung, can imagine worlds that do not exist

and infer reasons for observed phenomena. (Source: Drawing by Maayan
Harel.)



Causal inference Ferenc Huszar
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The moraleof the story

The moralg of this story is summed up in the following picture:



https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/

Assoclation

1. ASSOCIATION
ACTIVITY:  Seeing, Observing

QUESTIONS: What if 1 see ...?

(How are the variables related?

How would seeing X change my belief 1n Y?)

EXAMPLES: What does a symptom tell me about a disease?
What does a survey tell us about the
election results?
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Intervention
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2. INTERVENTION
ACTIVITY:

Doing, Intervening

QUESTIONS: Whatif Ido ...2 How?

(What would Y be 1f I do X7
How can I make Y happen?)

If I take aspirin, will my headache be cured?
What if we ban cigarettes?

EXAMPLES:




Counterfactuals

3. COUNTERFACTUALS

ACTIVITY:
QUESTIONS:

EXAMPLES:

Imagining, Retrospection, Understanding

What if I bad done ...2 Why?
(Was 1t X that caused Y? What 1f X had not
occurred? What if I had acted differently?)

Was it the aspirin that stopped my headache?
Would Kennedy be alive 1f Oswald had not
killed him? What 1f I had not smoked for the
last 2 years?
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Yoshua Bengio on [arXiv:1901.10912]

and public FB discussion
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Max Welling Isn't this what Bernhard
Schoelkopf has been saying for a while?

Like - Reply - 6w

&

Yann LeCun ...and Leon Bottou ?

Like - Reply - 6w

Leon Bottou Yoshua's paper says:
if you observe a distribution change
that comes from a causal effect,
then you'll adapt faster if your
generative model matches the
causal model.

Another way of seeing it is : the
right causal graph suggests a
particular factorization of the joint
distribution (a directed bayesian
network). A causal intervention
means that you only change one of
these factors (or a few factors)
while leaving the other ones
unchanged. Therefore if your
generative model is the right causal
model, meaning that it factorizes
the joint in the same way, it will be
easy to adapt it to the change
because only a few parameters
need changing (those associated
with the factors that actually
changed).

Said like this, it feels pretty trivial.
Yoshua proposes to use this to infer
the right causal model from a
plurality of observed distributions.

Dan Roy Max Welling yes. He's
been arguing for generative models
with causal structure for years as
the way to extract information for
rich environments. So not this

Max Welling Dan Roy | am, and |
think most of us, are keenly aware
that Josh has been the big
proponent of this view. And | think
most people agree with him on this
view. Integrating this view with
deep learning for more narrowly
defined tasks seems to me an
interesting intellectual pursuit
though. | think that's what's
happening here but | was not at the
talk ==
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Causally interpreted Bayesian networks

Definition: A DAG G = (V, ) together with a family x,, : X5,y xX, — [0, 1],
v € V., of Markov kernels is called Bayesian network. The interpretation of the
Markov kernels x, as mechanisms of the nodes implies a causal nature of the
Bayesian network.

Consider two distinct nodes v, w € V.
- If v — w we call v a (pot.) direct cause of w and w a (pot.) direct effect of v.
- If v ~» w we call v a (pot.) cause of w and w an (pot.) effect of v.

K1
X, season

genotype

YU
sprinkler X

K4

X, wet A o 7) C
Ksl smoking cancer
X5 slippery

e J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press 2000, 2009.
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Markov Equivalence
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A toy example Ferenc Huszar

- - - inFERENCe
Z = randn()

y=z+ 1+ sqgrt(3)*randn()

X=2Z

X = randn() y =1+ 2*randn()

y=x+ 1+ sqrt(3)*randn() X = (y-1)/4 + sqrt(3)*randn()/2

(O—( (O

0 " pearsonr = 0.47; g: $e.28 pearsonr = Og4; p = 9.839
® L ™ 6 ® o
4
4 4
2
2 2
> > >
0
0 0
-2 _2 _2
- o= 051 p = 2.5¢-34 -4 4
pearsonr = .5,p- Se- ®
-2 0 2 -2 0 2 -2 0 2
X X X

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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p(u) a(u; a) B(u; b) y(a, b; ¢)

p(u,a,b, {do(&)ﬂ = p(u) a(a) B(u;b) y(a, b; c)
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Intervention and the do-operation
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Intervention and the do-operation

plcldo(@)) = Y p(u,a,b,c|do(d))

u,a,b

p(u) a(u; a) B(u; b) y(a, b; c)
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When do they coincide?

Theorem: Let G = (V, E) be a DAG, and let A and B be two disjoint subsets
of V.. Then the following two statements are equivalent:
(1) For every Bayesian network B with underlying DAG G we have

p(zpldo(za)) = p(rp|za).

(2) R is not a cause of A and there is no common cause of A and B.
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A toy example
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P(y|do(X)) = p(y|x)

randn()

X< X X

3
X + 1 + sqrt(3)*randn()
3

y

pearsonr=nan,p=1
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2.50 2.75 3.00 3.25
X

3.50

OO

P(y|do(X)) = p(y)

+ 2*randn()

-1)/4 + sqrt(3)*randn()/2

X X X <
nonomon
WS W=

y

pearsonr=nan,p=1
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X

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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Ferenc Huszar
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Identifiability of causal effects

Theorem: Let B be a Bayesian network with DAG G = (V,FE). For two
distinct nodes v and w the following holds:

p(x'u: | dO(’L?.)) — Z p(xpa("u))p(ajw ’ Ly, Ip(z,('v)) .
)

Lpa(v

Y ~ W - @ ®
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Counterfactuals

3. COUNTERFACTUALS

ACTIVITY:
QUESTIONS:

EXAMPLES:

Imagining, Retrospection, Understanding

What if I bad done ...2 Why?
(Was 1t X that caused Y? What 1f X had not
occurred? What if I had acted differently?)

Was it the aspirin that stopped my headache?
Would Kennedy be alive 1f Oswald had not
killed him? What 1f I had not smoked for the
last 2 years?
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Counterfactuals

Example 1: David Blei's election example

This is an example David brought up during the Causality Panel and | referred back to this in my talk. I'm including it here for
the benefit of those who attended my MLSS talk:

Given that Hilary Clinton did not win the 2016 presidential election, and given that she did not visit Michigan 3 days before the election,
and given everything else we know about the circumstances of the election, what can we say about the probability of Hilary Clinton
winning the election, had she visited Michigan 3 days before the election?

Let's try to unpack this. We are are interested in the probability that:
e she hypothetically wins the election
conditionied on four sets of things:

e she |ost the election

e she did not visit Michigan

e any other relevant an observable facts
e she hypothetically visits Michigan

t's a weird beast: you're simultaneously conditioning on her visiting Michigan and not visiting Michigan. And you're interested in
the probability of her winning the election given that she did not. WHAT?

Why would quantifying this probability be useful? Mainly for credit assignment. We want to know why she lost the election, and
to what degree the loss can be attributed to her failure to visit Michigan three days before the election. Quantifying this is
useful, it can help political advisors make better decisions next time.
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Identifiability of causal effects
(front-door example)

plcldo(a)) = 3 (u)Blash
u,b

uw,b

Z (ZP ) p(bla)p(c|u,b)
Zpb‘a ZP ZP (u|a") p(c|u,b)

Z Zp Zpula,b ) p(c|u,a’,b)
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ln robotics
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The sensorimotor loop

Cognitive System

l Controller
Sensory Motor

feedback \

Internal stimulation f

J

Extcmul\ Movement

stimulation and feedback
I Environment
World

 R. Pfeifer, M. Lungarella, F. lida. Self-
Organization, Embodiment, and Biologically
Inspired Robotics. Science 2007.

by Keyan-Ghazi Zahedi
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Causal effects 1n the sensorimotor loop
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p(|do(@) = ) p(s|ca)p(c)

* N. Ay, K. Zahedi. On the Causal Structure of the Sensorimotor Loop. GSO 2014.

* N. Ay, K. Zahedi. An Information-Theoretic Approach to Prediction and Deliberative Decision Making of Embodied Systems.
Proc. of ICCN 2011. Advances in Cognitive Neurodynamics, Springer 2012.




ln Reinforcement Learning

Causally Correct Partial Models for Reinforcement Learning

Danilo J. Rezende ! Ivo Danihelka™!? George Papamakarios! Nan Rosemary Ke® Ray Jiang !
Theophane Weber ! Karol Gregor ' Hamza Merzic! Fabio Viola! Jane Wang'! Jovana Mitrovic!
Frederic Besse! Ioannis Antonoglou!? Lars Buesing !

Causally Correct Partial Models
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Figure 3. Graphical representations of the environment, the agent, and the various models. Circles are stochastic nodes, rectangles are
deterministic nodes. (a) Agent interacting with the environment, generating a trajectory {y:, at}fzo. These trajectories are the training
data for the models. (b) Same as (a) but also including the backdoor z: in the generated trajectory. The red arrows indicate the locations of
the interventions. (c¢) Standard autoregressive generative model of observations. The model predicts the observation y; which it then

feeds into h;1. (d) Example of a Non-Causal Partial Model (NCPM) that predicts the observation y; without feeding it into A;4 1. (€)
Proposed Causal Partial Model (CPM), with a backdoor z: for the actions.



