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Abstract

We develop a general approach to distill symbolic representations of a learned
deep model by introducing strong inductive biases. We focus on Graph Neural
Networks (GNNs). The technique works as follows: we first encourage sparse
latent representations when we train a GNN in a supervised setting, then we
apply symbolic regression to components of the learned model to extract explicit
physical relations. We find the correct known equations, including force laws and
Hamiltonians, can be extracted from the neural network. We then apply our method
to a non-trivial cosmology example—a detailed dark matter simulation—and
discover a new analytic formula which can predict the concentration of dark matter
from the mass distribution of nearby cosmic structures. The symbolic expressions
extracted from the GNN using our technique also generalized to out-of-distribution-
data better than the GNN itself. Our approach offers alternative directions for
interpreting neural networks and discovering novel physical principles from the
representations they learn.

1 Introduction

The miracle of the appropriateness of the language of mathematics for the formulation of the laws of
physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it and
hope that it will remain valid in future research and that it will extend, for better or for worse, to our
pleasure, even though perhaps also to our bafflement, to wide branches of learning.—Eugene Wigner
“The Unreasonable Effectiveness of Mathematics in the Natural Sciences” [1].

For thousands of years, science has leveraged models made out of closed-form symbolic expressions,
thanks to their many advantages: algebraic expressions are usually compact, present explicit inter-
pretations, and generalize well. However, finding these algebraic expressions is difficult. Symbolic
regression is one option: a supervised machine learning technique that assembles analytic functions
to model a given dataset. However, typically one uses genetic algorithms—essentially a brute force
procedure as in [2]—which scale exponentially with the number of input variables and operators.
Many machine learning problems are thus intractable for traditional symbolic regression.

On the other hand, deep learning methods allow efficient training of complex models on high-
dimensional datasets. However, these learned models are black boxes, and difficult to interpret.

Code for our models and experiments can be found at https://github.com/MilesCranmer/symbolic_
deep_learning.
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Figure 1: A cartoon depicting how we extract physical equations from a dataset.

Furthermore, generalization is difficult without prior knowledge about the data imposed directly on
the model. Even if we impose strong inductive biases on the models to improve generalization, the
learned parts of networks typically are linear piece-wise approximations which extrapolate linearly
(if using ReLU as activation [3]).

Here, we propose a general framework to leverage the advantages of both deep learning and symbolic
regression. As an example, we study Graph Networks (GNs or GNNs) [4] as they have strong and
well-motivated inductive biases that are very well suited to problems we are interested in. Then we
apply symbolic regression to fit different internal parts of the learned model that operate on reduced
size representations. The symbolic expressions can then be joined together, giving rise to an overall
algebraic equation equivalent to the trained GN. Our work is a generalized and extended version of
that in [5].

We apply our framework to three problems—rediscovering force laws, rediscovering Hamiltoni-
ans, and a real world astrophysical challenge—and demonstrate that we can drastically improve
generalization, and distill plausible analytical expressions. We not only recover the injected closed-
form physical laws for Newtonian and Hamiltonian examples, we also derive a new interpretable
closed-form analytical expression that can be useful in astrophysics.

2 Framework

Our framework can be summarized as follows. (1) Engineer a deep learning model with a separable
internal structure that provides an inductive bias well matched to the nature of the data. Specifically,
in the case of interacting particles, we use Graph Networks as the core inductive bias in our models.
(2) Train the model end-to-end using available data. (3) Fit symbolic expressions to the distinct
functions learned by the model internally. (4) Replace these functions in the deep model by the
symbolic expressions. This procedure with the potential to discover new symbolic expressions for
non-trivial datasets is illustrated in fig. 1.

Particle systems and Graph Networks. In this paper we focus on problems that can be well
described as interacting particle systems. Nearly all of the physics we experience in our day-to-day
life can be described in terms of interactions rules between particles or entities, so this is broadly
relevant. Recent work has leveraged the inductive biases of Interaction Networks (INs) [6] in their
generalized form, the Graph Network, a type of Graph Neural Network [7, 8, 9], to learn models of
particle systems in many physical domains [6, 10, 11, 12, 13, 14, 15, 16].

Therefore we use Graph Networks (GNs) at the core of our models, and incorporate into them
physically motivated inductive biases appropriate for each of our case studies. Some other interesting
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approaches for learning low-dimensional general dynamical models include [17, 18, 19]. Other
related work which studies the physical reasoning abilities of deep models include [20, 21, 22, 23].

Internally, GNs are structured into three distinct components: an edge model, a node model, and a
global model, which take on different but explicit roles in a regression problem. The edge model, or
“message function,” which we denote by φe, maps from a pair of nodes (vi,vj ∈ RLv ) connected by
an edge in a graph together with some vector information for the edge, to a message vector. These
message vectors are summed element-wise for each receiving node over all of their sending nodes,
and the summed vector is passed to the node model. The node model, φv, takes the receiving node
and the summed message vector, and computes an updated node: a vector representing some property
or dynamical update. Finally, a global model φu aggregates all messages and all updated nodes
and computes a global property. φe, φv, φu are usually approximated using multilayer-perceptrons,
making them differentiable end-to-end. More details on GNs are given in the appendix. We illustrate
the internal structure of a GN in fig. 2.
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Figure 2: An illustration of the internal structure of the graph neural network we use in some of our
experiments. Note that the comparison to Newtonian mechanics is purely for explanatory purposes,
but is not explicit. Differences include: the “forces” (messages) are often high dimensional, the nodes
need not be physical particles, φe and φv are arbitrary learned functions, and the output need not be
an updated state. However, the rough equivalency between this architecture and physical frameworks
allows us to interpret learned formulas in terms of existing physics.

GNs are the ideal candidate for our approach due to their inductive biases shared by many physics
problems. (a) They are equivariant under particle permutations. (b) They are differentiable end-to-end
and can be trained efficiently using gradient descent. (c) They make use of three separate and
interpretable internal functions φe, φv, φu, which are our targets for the symbolic regression. GNs
can also be embedded with additional symmetries as in [24, 25], but we do not implement these.

Symbolic regression. After training the Graph Networks, we use the symbolic regression package
eureqa [2] to perform symbolic regression and fit compact closed-form analytical expressions to
φe, φv, and φu independently. eureqa works by using a genetic algorithm to combine algebraic
expressions stochastically. The technique is similar to natural selection, where the “fitness” of each
expression is defined in terms of simplicity and accuracy. The operators considered in the fitting
process are +,−,×, /,>,<, ^, exp, log, IF(·, ·, ·) as well as real constants. After fitting expressions
to each part of the graph network, we substitute the expressions into the model to create an alternative
analytic model. We then refit any parameters in the symbolic model to the data a second time, to
avoid the accumulated approximation error. Further details are given in the appendix.

This approach gives us an explicit way of interpreting the trained weights of a structured neural
network. An alternative way of interpreting GNNs is given in [26]. This new technique also allows

3



us to extend symbolic regression to high-dimensional datasets, where it is otherwise intractable. As
an example, consider attempting to discover the relationship between a scalar and a time series, given
data {(zi, {xi,1,xi,2, . . .xi,100}}, where zi ∈ R and xi,j ∈ R5. Assume the true relationship as
zi = y2

i , for yi =
∑100
j=1 yi,j , yi,j = exp

(
xi,j,3

)
+ cos

(
2xi,j,1

)
. Now, in a learnable model, assume

an inductive bias zi = f(
∑100
j=1 g(xi,j)) for scalar functions f and g. If we need to consider 109

equations for both f and g, then a standard symbolic regression search would need to consider their
combination, leading to (109)2 = 1018 equations in total. But if we first fit a neural network for f and
g, and after training, fit an equation to f and g separately, we only need to consider 2×109 equations.
In effect, we factorize high-dimensional datasets into smaller sub-problems that are tractable for
symbolic regression.

We emphasize that this method is not a new symbolic regression technique by itself; rather, it is a
way of extending any existing symbolic regression method to high-dimensional datasets by the use of
a neural network with a well-motivated inductive bias. While we chose eureqa for our experiments
based on its efficiency and ease-of-use, we could have chosen another low-dimensional symbolic
regression package, such as our new high-performance package PySR1 [27]. Other community pack-
ages such as [28, 29, 30, 31, 32, 33, 34, 35, 36], could likely also be used and achieve similar results
(although [32] is unable to fit the constants required for the tasks here). Ref. [29] is an interesting
approach that uses gradient descent on a pre-defined equation up to some depth, parametrized with a
neural network, instead of genetic algorithms; [35] uses gradient descent on a latent embedding of an
equation; and [36] demonstrates Monte Carlo Tree Search as a symbolic regression technique, using
an asymptotic constraint as input to a neural network which guides the search. These could all be
used as drop-in replacements for eureqa here to extend their algorithms to high-dimensional datasets.

We also note several exciting packages for symbolic regression of partial differential equations on
gridded data: [37, 38, 39, 40, 41, 42]. These either use sparse regression of coefficients over a
library of PDE terms, or a genetic algorithm. While not applicable to our use-cases, these would be
interesting to consider for future extensions to gridded PDE data.

Compact internal representations. While training, we encourage the model to use compact
internal representations for latent hidden features (e.g., messages) by adding regularization terms
to the loss (we investigate using L1 and KL penalty terms with a fixed prior, see more details in the
Appendix). One motivation for doing this is based on Occam’s Razor: science always prefers the
simpler model or representation of two which give similar accuracy. Another stronger motivation
is that if there is a law that perfectly describes a system in terms of summed message vectors in a
compact space (what we call a linear latent space), then we expect that a trained GN, with message
vectors of the same dimension as that latent space, will be mathematical rotations of the true vectors.
We give a mathematical explanation of this reasoning in the appendix, and emphasize that while it
may seem obvious now, our work is the first to demonstrate it. More practically, by reducing the size
of the latent representations, we can filter out all low-variance latent features without compromising
the accuracy of the model, and vastly reducing the dimensionality of the hidden vectors. This makes
the symbolic regression of the internal models more tractable.

Implementation details. We write our models with PyTorch [43] and PyTorch Geometric[44]. We
train them with a decaying learning schedule using Adam [45]. The symbolic regression technique is
described in section 4.1. More details are provided in the Appendix.

3 Case studies

In this section we present three specific case studies where we apply our proposed framework using
additional inductive biases.

Newtonian dynamics. Newtonian dynamics describes the dynamics of particles according to
Newton’s law of motion: the motion of each particle is modeled using incident forces from nearby
particles, which change its position, velocity and acceleration. Many important forces in physics
(e.g., gravitational force −Gm1m2

r2 r̂) are defined on pairs of particles, analogous to the message
function φe of our Graph Networks. The summation that aggregates messages is analogous to the

1https://github.com/MilesCranmer/PySR
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calculation of the net force on a receiving particle. Finally, the node function, φv , acts like Newton’s
law: acceleration equals the net force (the summed message) divided by the mass of the receiving
particle.

To train a model on Newtonian dynamics data, we train the GN to predict the instantaneous accelera-
tion of the particle against that calculated in the simulation. While Newtonian mechanics inspired the
original development of INs, never before has an attempt to distill the relationship between the forces
and the learned messages been successful. When applying the framework to this Newtonian dynamics
problem (as illustrated in fig. 1), we expect the model trained with our framework to discover that the
optimal dimensionality of messages should match the number of spatial dimensions. We also expect
to recover algebraic formulas for pairwise interactions, and generalize better than purely learned
models. We refer our readers to section 4.1 and the Appendix for more details.

Hamiltonian dynamics. Hamiltonian dynamics describes a system’s total energy H(q,p) as a
function of its canonical coordinates q and momenta p—e.g., each particle’s position and momentum.
The dynamics of the system change perpendicularly to the gradient ofH: dq

dt = ∂H
∂p ,

dp
dt = −dH

dq .

Here, we will use a variant of a Hamiltonian Graph Network (HGN) [46] to learnH for the Newtonian
dynamics data. This model is a combination of a Hamiltonian Neural Network [47, 48] and GN.
In this case, the global model φu of the GN will output a single scalar value for the entire system
representing the energy, and hence the GN will have the same functional form as a Hamiltonian. By
then taking the partial derivatives of the GN-predictedH with respect to the position and momentum,
q and p, respectively, of the input nodes, we will be able to calculate the updates to the momentum
and position. We impose a modification to the HGN to facilitate its interpretability, and name this the
“Flattened HGN” or FlatHGN: instead of summing high-dimensional encodings of nodes to calculate
φu, we instead set it to be a sum of scalar pairwise interaction terms,Hpair and a per-particle term,
Hself. This is because many physical systems can be exactly described this way. This is a Hamiltonian
version of the Lagrangian Graph Network in [49], and is similar to [50]. This is still general enough
to express many physical systems, as nearly all of physics can be written as summed interaction
energies, but could also be relaxed in the context of the framework.

Even though the model is trained end-to-end, we expect our framework to allow us to extract analytical
expressions for both the per-particle kinetic energy, and the scalar pairwise potential energy. We refer
our readers to our section 4.2 and the Appendix for more details.

Dark matter halos for cosmology. We also apply our framework to a dataset generated from state-
of-the-art dark matter simulations [51]. We predict a property (“overdensity”) of a dark matter blob
(called a “halo”) from the properties (positions, velocities, masses) of halos nearby. We would like to
extract this relationship as an analytic expression so we may interpret it theoretically. This problem
differs from the previous two use cases in many ways, including (1) it is a real-world problem where
an exact analytical expression is unknown; (2) the problem does not involve dynamics, rather, it is a
regression problem on a static dataset; and (3) the dataset is not made of particles, but rather a grid
of density that has been grouped and reduced to handmade features. Similarly, we do not know the
dimensionality of interactions, should a linear latent space exist. We rely on our inductive bias to find
the optimal dimensional of the problem, and then yield an interpretable model that performs better
than existing analytical approximations. We refer our readers to our section 4.3 and the Appendix for
further details.

4 Experiments & results

4.1 Newtonian dynamics

We train our Newtonian dynamics GNs on data for simple N-body systems with known force laws.
We then apply our technique to recover the known force laws via the representations learned by the
message function φe.

Data. The dataset consists of N-body particle simulations in two and three dimensions, under
different interaction laws. We used the following forces: (a) 1/r orbital force: −m1m2r̂/r; (b) 1/r2

orbital force −m1m2r̂/r
2; (c) charged particles force q1q2r̂/r

2; (d) damped springs with |r − 1|2
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Figure 3: A diagram showing how we implement and exploit our inductive bias on GNs. A video of
this figure during training can be seen by going to the URL https://github.com/MilesCranmer/
symbolic_deep_learning/blob/master/video_link.txt.

potential and damping proportional and opposite to speed; (e) discontinuous forces, −{0, r2}r̂,
switching to 0 force for r < 2; and (f) springs between all particles, a (r − 1)2 potential. The
simulations themselves contain masses and charges of 4 or 8 particles, with positions, velocities, and
accelerations as a function of time. Further details of these systems are given in the appendix, with
example trajectories shown in fig. 4.

Model training. The models are trained to predict instantaneous acceleration for every particle
given the current state of the system. To investigate the importance of the size of the message
representations for interpreting the messages as forces, we train our GN using 4 different strategies:
1. Standard, a GN with 100 message components; 2. Bottleneck, a GN with the number of message
components matching the dimensionality of the problem (2 or 3); 3. L1, same as “Standard” but using
a L1 regularization loss term on the messages with a weight of 10−2; and 4. KL same as “Standard”
but regularizing the messages using the Kullback-Leibler (KL) divergence with respect to Gaussian
prior. Both the L1 and KL strategies encourage the network to find compact representations for the
message vectors, using different regularizations. We optimize the mean absolute loss between the
predicted acceleration and the true acceleration of each node. Additional training details are given in
the appendix and found in the codebase.

Performance comparison. To evaluate the learned models, we generate a new dataset from a
different random seed. We find that the model with L1 regularization has the greatest prediction
performance in most cases (see table 3). It is worth noting that the bottleneck model, even though it
has the correct dimensionalty, performs worse than the model using L1 regularization under limited
training time. We speculate that this may connect to the lottery ticket hypothesis [52].

Interpreting the message components. As a first attempt to interpret the information in the
message components, we pick the D message features (where D is the dimensionality of the
simulation) with the highest variance (or KL divergence), and fit each to a linear combination of the
true force components. We find that while the GN trained in the Standard setting does not show strong
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correlations with force components (also seen in fig. 5), all other models for which the effective
message size is constrained explicitly (bottleneck) or implicitly (KL or L1) to be low dimensional
yield messages that are highly correlated with the true forces (see table 1 which indicates the fit errors
with respect to the true forces), with the model trained with L1 regularization showing the highest
correlations. An explicit demonstration that the messages in a graph network learn forces has not
been observed before our work.

The messages in these models are thus explicitly interpretable as forces. The video
at https://github.com/MilesCranmer/symbolic_deep_learning/blob/master/video_
link.txt (fig. 3) shows a fit of the message components over time during training, showing how the
model discovers a message representation that is highly correlated with a rotation of the true force
vector in an unsupervised way.

Sim. Standard Bottleneck L1 KL

Charge-2 0.016 0.947 0.004 0.185
Charge-3 0.013 0.980 0.002 0.425
r−1-2 0.000 1.000 1.000 0.796
r−1-3 0.000 1.000 1.000 0.332
r−2-2 0.004 0.993 0.990 0.770
r−2-3 0.002 0.994 0.977 0.214
Spring-2 0.032 1.000 1.000 0.883
Spring-3 0.036 0.995 1.000 0.214

Table 1: The R2 value of a fit of a linear combination of true force components to the message
components for a given model (see text). Numbers close to 1 indicate the messages and true force are
strongly correlated. Successes/failures of force law symbolic regression are tabled in the appendix.

Symbolic regression on the internal functions. We now demonstrate symbolic regression to
extract force laws from the messages, without using prior knowledge for each force’s form. To do
this, we record the most significant message component of φe, which we refer to as φe1, over random
samples of the training dataset. The inputs to the regression are m1,m2, q1, q2, x1, x2, . . . (mass,
charge, x-position of receiving and sending node) as well as simplified variables to help the symbolic
regression: e.g., ∆x for x displacement, and r for distance.

We then use eureqa to fit the φe1 to the inputs by minimizing the mean absolute error (MAE) over
various analytic functions. Analogous to Occam’s razor, we find the “best” algebraic model by asking
eureqa to provide multiple candidate fits at different complexity levels (where complexity is scored as
a function of the number and the type of operators, constants and input variables used), and select the
fit that maximizes the fractional drop in mean absolute error (MAE) over the increase in complexity
from the next best model: (−∆ log(MAEc)/∆c). From this, we recover many analytical expressions
(this is tabled in the appendix) that are equivalent to the simulated force laws (a, b indicate learned
constants):

• Spring, 2D, L1 (expect φe1 ≈ (a · (∆x,∆y))(r − 1) + b).

φe1 ≈ 1.36∆y + 0.60∆x− 0.60∆x+ 1.37∆y

r
− 0.0025

• 1/r2, 3D, Bottleneck (expect φe1 ≈ a·(∆x,∆y,∆z)
r3 + b).

φe1 ≈
0.021∆xm2 − 0.077∆ym2

r3

• Discontinuous, 2D, L1 (expect φe1 ≈ IF(r > 2, (a · (∆x,∆y,∆z))r, 0) + b).

φe1 ≈ IF(r > 2, 0.15r∆y + 0.19r∆x, 0)− 0.038

Note that reconstruction does not always succeed, especially for training strategies other than L1 or
bottleneck models that cannot successfully find compact representations of the right dimensionality
(see some examples in Appendix).
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4.2 Hamiltonian dynamics

Using the same datasets from the Newtonian dynamics case study, we also train our “FlatHGN,” with
the Hamiltonian inductive bias, and demonstrate that we can extract scalar potential energies, rather
than forces, for all of our problems. For example, in the case of charged particles, with expected
potential (Hpair ≈ aq1q2

r ), symbolic regression applied to the learned message function yields2:
Hpair ≈ 0.0019q1q2

r .

It is also possible to fit the per-particle term Hself, however, in this case the same kinetic energy
expression is recovered for all systems. In terms of performance results, the Hamiltonian models are
comparable to that of the L1 regularized model across all datasets (See Supplementary results table).

Note that in this case, by design, the “FlatHGN“ has a message function with a dimensionality of 1 to
match the output of the Hamiltonian function which is a scalar, so no regularization is needed, as the
message size is directly constrained to the right dimension.

4.3 Dark matter halos for cosmology

Now, one may ask: “will this strategy also work for general regression problems, non-trivial datasets,
complex interactions, and unknown laws?” Here we give an example that satisfies all four of these
concerns, using data from a gravitational simulation of the Universe.

Cosmology studies the evolution of the Universe from the Big Bang to the complex galaxies and
stars we see today [53]. The interactions of various types of matter and energy drive this evolution.
Dark Matter alone consists of ≈ 85% of the total matter in the Universe [54, 55], and therefore is
extremely important for the development of galaxies. Dark matter particles clump together and act as
gravitational basins called “halos” which pull regular baryonic matter together to produce stars, and
form larger structures such as filaments and galaxies. It is an important question in cosmology to
predict properties of dark matter halos based on their “environment,” which consist of other nearby
dark matter halos. Here we study the following problem: how can we predict the excess amount of
matter (in comparison to its surroundings, δ = ρ−〈ρ〉

〈ρ〉 ) for a dark matter halo based on its properties
and those of its neighboring dark matter halos?

A hand-designed estimator for the functional form of δi for halo i might correlate δ with the mass of
the same halo, Mi, as well as the mass within 20 distance units (we decide to use 20 as the smoothing

radius):
∑|ri−rj|<20

j 6=i Mj . The intuition behind this scaling is described in [56]. Can we find a better
equation that we can fit better to the data, using our methodology?

Data, training and symbolic regression. We study this problem with the open sourced N-body
dark matter simulations from [51]. We choose the zeroth simulation in this dataset, at the final time
step (current day Universe), which contains 215,854 dark matter halos. Each halo has mass Mi,
position ri, and velocity vi. We also compute the smoothed overdensity δi at the location of the
center of each halo. We convert this set of halos into a graph by connecting halos within fifty distance
units (each distance unit is approximately 3 million light years long) of each other. This results in
30,437,218 directional edges between halos, or 71 neighbors per halo on average. We then attempt to
predict δi for each halo with a GN. Training details are the same as for the Newtonian simulations,
but we switch to 500 hidden units after hyperparameter tuning based on GN accuracy.

The GN trained with L1 appears to have messages containing only 1 informative feature, so we
extract message samples for this component of the messages over the training set for random pairs
of halos, and node function samples for random receiving halos and their summed messages. The
formula extracted by the algorithm is given in table 2 as “Best, with mass”. The form of the formula
is new and it captures a well-known relationship between halo mass and environment: bias-mass
relationship. We refit the parameters in the formula on the original training data to avoid accumulated
approximation error from the multiple levels of function fitting. We achieve a loss of 0.0882 where
the hand-designed formula achieves a loss of 0.121. It is quite surprising that our formula extracted
by our approach is able to achieve a better fit than the formula hand-designed by scientists.

2We have removed constant terms that don’t depend on the position or momentum as those are just arbitrary
offsets in the Hamiltonian which don’t have an impact on the dynamics. See Appendix for more details.
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Test Formula Summed Component
〈
|δi−δ̂i|

〉

O
ld Constant δ̂i = C1 N/A 0.421

Simple δ̂i = C1 + (C2 +MiC3)ei ei =
∑|ri−rj|<20

j 6=i Mj 0.121
N

ew

Best, without mass δ̂i = C1 + ei
C2+C3ei|vi| ei =

∑
j 6=i

C4+|vi−vj|
C5+(C6|ri−rj|)C7

0.120

Best, with mass δ̂i = C1 + ei
C2+C3Mi

ei =
∑
j 6=i

C4+Mj

C5+(C6|ri−rj|)C7
0.0882

Table 2: A comparison of both known and discovered formulas for dark matter overdensity. Ci
indicates fitted parameters, which are given in the appendix.

The formula makes physical sense. Halos closer to the dark matter halo of interest should influence
its properties more, and thus the summed function scales inversely with distance. Similar to the
hand-designed formula, the overdensity should scale with the total matter density nearby, and we see
this in that we are summing over mass of neighbors. The other differences are very interesting, and
less clear; we plan to do detailed interpretation of these results in a future astrophysics study.

As a followup, we also calculated if we could predict the halo overdensity from only velocity and
position information. This is useful because the most direct observational information available is
in terms of halo velocities. We perform an identical analysis without mass information, and find
a curiously similar formula. The relative speed between two neighbors can be seen as a proxy for
mass, which is seen in table 2. This makes sense as a more massive object will have more gravity,
accelerating falling particles near it to faster speeds. This formula is also new to cosmologists, and
can in principle help push forward cosmological analysis.

Symbolic generalization. As we know that our physical world is well described by mathematics,
we can use it as a powerful prior for creating new models of our world. Therefore, if we distill a
neural network into a simple algebra, will the algebra generalize better to unseen data? Neural nets
excel at learning in high-dimensional spaces, so perhaps, by combining both of these types of models,
one can leverage the unique advantages of each. Such an idea is discussed in detail in [57].

Here we study this on the cosmology example by masking 20% of the data: halos which have δi > 1.
We then proceed through the same training procedure as before, learning a GN to predict δ with L1

regularization, and then extracting messages for examples in the training set. Remarkably, we obtain
a functionally identical expression when extracting the formula from the graph network on this subset
of the data. We fit these constants to the same masked portion of data on which the graph network
was trained. The graph network itself obtains an average error 〈|δi − δ̂i| 〉 = 0.0634 on the training
set, and 0.142 on the out-of-distribution data. Meanwhile, the symbolic expression achieves 0.0811
on the training set, but 0.0892 on the out-of-distribution data. Therefore, for this problem, it seems
a symbolic expression generalizes much better than the very graph neural network it was extracted
from. This alludes back to Eugene Wigner’s article: the language of simple, symbolic models is
remarkably effective in describing the universe.

5 Conclusion

We have demonstrated a general approach for imposing physically motivated inductive biases on
GNs and Hamiltonian GNs to learn interpretable representations, and potentially improved zero-shot
generalization. Through experiment, we have shown that GN models which implement a bottleneck
or L1 regularization in the message passing layer, or a Hamiltonian GN flattened to pairwise and
self-terms, can learn message representations equivalent to linear transformations of the true force
vector or energy. We have also demonstrated a generic technique for finding an unknown force
law from these models: symbolic regression is capable of fitting explicit equations to our trained
model’s message function. We repeated this for energies instead of forces via introduction of the
“Flattened Hamiltonian Graph Network.” Because GNs have more explicit substructure than their
more homogeneous deep learning relatives (e.g., plain MLPs, convolutional networks), we can draw
more fine-grained interpretations of their learned representations and computations. Finally, we have
demonstrated our algorithm on a non-trivial dataset, and discovered a new law for cosmological dark
matter.
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Supplementary

A Model Implementation Details

Code for our implementation can be found at https://github.com/MilesCranmer/symbolic_
deep_learning. Here we describe how one can implement our model from scratch in a deep
learning framework. The main argument in this paper is that one can apply strong inductive biases to
a deep learning model to simplify the extraction of a symbolic representation of the learned model.
While we emphasize that this idea is general, in this section we focus on the specific Graph Neural
Networks we have used as an example throughout the paper.

A.1 Basic Graph Representation

We would like to use the graph G = (V,E) to predict an updated graph G′ = (V ′, E). Our input
dataset is a graph G = (V,E) consisting of Nv nodes with Lv features each: V = {vi}i=1:Nv ,
with each vi ∈ RLv . The nodes are connected by Ne edges: E = {(rk, sk)}k=1:Ne , where
rk, sk ∈ {1 : Nv} are the indices for the receiving and sending nodes, respectively. We would like
to use this graph to predict another graph V ′ = {v′i}i=1:Nv , where each v′i ∈ RLv′ is the node
corresponding to vi. The number of features in these predicted nodes, Lv′, need not necessarily be
the same as for the input nodes (Lv), though this could be the case for dynamical models where one
is predicting updated states of particles. For more general regression problems, the number of output
features is arbitrary.

Edge model. The prediction is done in two parts. We create the first neural network, the edge model
(or “message function”), to compute messages from one node to another: φe : RLv × RLv → RLe

′

.
Here, Le

′
is the number of message features. In the bottleneck model, one sets Le

′
equal to the known

dimension of the force, which is 2 or 3 for us. In our models, we set Le
′

= 100 for the standard and
L1 models, and 200 for the KL model (which is described separately later on). We create φe as a
multi-layer perceptron with ReLU activations and two hidden layers, each with 300 hidden nodes.
The mapping is e′k = φe(vrk ,vsk) for all edges indexed by k (i.e., we concatenate the receiving and
sending node features).

Aggregation. These messages are then pooled via element-wise summation for each receiving
node i into the summed message, ē′i ∈ RLe

′

. This can be written as ē′i =
∑
k∈{1:Ne|rk=i} e′k.

Node model. We create a second neural network to predict the output nodes, v′i, for each i from the
corresponding summed message and input node. This net can be written as φv : RLv ×RLe

′

→ RLv′ ,
and has the mapping: v̂′i = φv(vi, ē

′
i), where v̂′i is the prediction for v′i. We also create φv as a
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multi-layer perceptron with ReLU activations and two hidden layers, each with 300 hidden nodes.
This model is then trained with the loss function as described later in this section.

Summary. We can write out our forward model for the bottleneck, standard, and L1 models as:

Input graph G = (V,E) with

nodes (e.g., positions of particles) V = {vi}i=1:Nv ; vi ∈ RL
v

, and
edges (indices of connected nodes) E = {(rk, sk)}k=1:Ne ; rk, sk ∈ {1 : Nv}.
Compute messages for each edge: e′k = φe(vrk ,vsk),

e′k ∈ RL
e′

, then

sum for each receiving node i : ē′i =
∑

k∈{1:Ne|rk=i}

e′k,

ē′i ∈ RL
e′

.

Compute output node prediction: v̂′i = φv(vi, ē
′
i)

v̂′i ∈ RL
v′
.

Loss. We jointly optimize the parameters in φv and φe via mini-batch gradient descent with Adam
as the optimizer. Our total loss function for optimizing is:

L = Lv + α1Le + α2Ln, where

the prediction loss is Lv =
1

Nv

∑
i∈{1:Nv}

∣∣v′i − v̂′i
∣∣,

the message regularization is Le =
1

Ne


∑
k∈{1:Ne}

∣∣e′k∣∣, L1

0, Standard
0, Bottleneck

,

with the regularization constant α1 = 10−2, and the

regularization for the network weights is Ln =
∑

l={1:N l}

|wl|2,

with α2 = 10−8,

where v′i is the true value for the predicted node i. wl is the l-th network parameter out
of N l total parameters. This implementation can be visualized during training in the video
https://github.com/MilesCranmer/symbolic_deep_learning. During training, we also ap-
ply a random translation augmentation to all the particle positions to artificially generate more training
data.

Next, we describe the KL variant of this model. Note that for the cosmology example in section 4.3,
we use the L1 model described above with 500 hidden nodes (found with coarse hyperparameter
tuning to optimize accuracy) instead of 300, but other parameters are set the same.

A.2 KL Model

The KL model is a variational version of the GN implementation above, which models the messages
as distributions. We choose a normal distribution for each message component with a prior of
µ = 0, σ = 1. More specifically, the output of φe should now map to twice as many features as it
is predicting a mean and variance, hence we set Le

′
= 200. The first half of the outputs of φe now

represent the means, and the second half of the outputs represent the log variance of a particular
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message component. In other words,
µ′k = φe1:100(vrk ,vsk),

σ′2k = exp
(
φe101:200(vrk ,vsk)

)
,

e′k ∼ N (µ′k, diag(σ′2k )),

ē′i =
∑

k∈{1:Ne|rk=i}

e′k,

v̂′i = φv(vi, ē
′
i),

where N is a multinomial Gaussian distribution. Every time the graph network is run, we calculate
the mean and log variance of messages, sample each message once to calculate e′k, and pass those
samples through a sum to compute a sample of ē′i and then pass that value through the edge function
to compute a sample of v̂′i. The loss is calculated normally, except for Le, which becomes the KL
divergence with respect to our Gaussian prior of µ = 0, σ = 1:

Le =
1

Ne

∑
k={1:Ne}

∑
j={1:Le′/2}

1

2

(
µ′2k,j + σ′2k,j − log

(
σ′2k,j

))
,

with α1 = 1 (equivalent to β = 1 for the loss of a β-Variational Autoencoder; simply the standard
VAE). The KL-divergence loss also encourages sparsity in the messages e′k similar to the L1 loss.
The difference is that here, an uninformative message component will have µ = 0, σ = 1 (a KL of 0)
rather than a small absolute value. We train the networks with a decaying learning schedule as given
in the example code.

A.3 Constraining Information in the Messages

The hypothesis which motivated our graph network inductive bias is that if one minimizes the
dimension of the vector space used by messages in a GN, the components of message vectors will
learn to be linear combinations of the true forces (or equivalent underlying summed function) for
the system being learned. The key observation is that e′k could learn to correspond to the true force
vector imposed on the rk-th body due to its interaction with the sk-th body.

Here, we sketch a rough mathematical explanation of our hypothesis that we will reconstruct the true
force in the graph network given our inductive biases. Newtonian mechanics prescribes that force
vectors, fk ∈ F , can be summed to produce a net force,

∑
k fk = f̄ ∈ F , which can then be used to

update the dynamics of a body. Our model uses the i-th body’s pooled messages, ē′i to update the
body’s state via v′i = φv(vi, ē

′
i). If we assume our GN is trained to predict accelerations perfectly

for any number of bodies, this means (ignoring mass) that f̄i =
∑
rk=i fk = φv(vi,

∑
rk=i e

′
k) =

φv(vi, ē
′
i). Since this is true for any number of bodies, we also have the result for a single interaction:

f̄i = fk,rk=i = φv(vi, e
′
k,rk=i) = φv(vi, ē

′
i). Thus, we can substitute this expression into the

multi-interaction case:
∑
rk=i φ

v(vi, e
′
k) = φv(vi, ē

′
i) = φv(vi,

∑
rk=i e

′
k). From this relation, we

see that φv has to be a linear transformation conditioned on vi. Therefore, for cases where φv(vi, ē′i)
is invertible in ē′i (which becomes true when ē′i is the same dimension as the output of φv), we can
write e′k = (φv(vi, ·))−1(fk), which is also a linear transform, meaning that the message vectors are
linear transformations of the true forces when Le

′
is equal to the dimension of the forces.

If the dimension of the force vectors (or what the minimum dimension of the message vectors “should”
be) is unknown, one can encourage the messages to be sparse by applying L1 or Kullback-Leibler
regularizations to the messages in the GN. The aim is for the messages to learn the minimal vector
space required for the computation automatically. This is a more mathematical explanation of why the
message features are linear combinations of the force vectors, when our inductive bias of a bottleneck
or sparse regularization is applied. We emphasize that this is a new contribution: never before has
previous work explicitly identified the forces in a graph network.

General Graph Neural Networks. In all of our models here, we assume the dataset does not have
edge-specific features, such as a different coupling constants between different particles, but these
could be added by concatenating edge features to the receiving and sending node input to φe. We
also assume there are no global properties. The graph neural network is described in general form
in [4]. All of our techniques are applicable to the general form: one would approximate φe with a
symbolic model with included input edge parameters, and also fit the global model, denoted φu.
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A.4 Flattened Hamiltonian Graph Network.

As part of this study, we also consider an alternate dynamical model that is described by a linear
latent space other than force vectors. In the Hamiltonian formalism of classical mechanics, energies
of pairwise interactions and kinetic and potential energies of particles are pooled into a global energy
value,H, which is a scalar. We label pairwise interaction energyHpair and the energy of individual
particles asHself. Thus, using our previous graph notation, we can write the total energy of a system
as:

H =
∑

i=1:Nv

Hself(vi) +
∑

k∈{1:Ne}

Hpair(vrk ,vsk). (1)

For particles interacting via gravity, this would be

H =
∑
i

p2
i

2mi
− 1

2

∑
i 6=j

mimj∣∣ri − rj
∣∣ , (2)

where pi,mi, ri indicates the momentum, mass, and position of particle i, respectively, and we have
set the gravitational constant to 1. Following [47, 46], we could modelH as a neural network, and
apply Hamilton’s equations to create a dynamical model. More specifically, as in [46], we can predict
H as the global property of a GN (this is called a Hamiltonian Graph Network or HGN). However,
energy, like forces in Cartesian coordinates, is a summed quantity. In other words, energy is another
“linear latent space” that describes the dynamics.

Therefore, we argue that an HGN will be more interpretable if we explicitly sum up energies over
the system, rather than computeH as a global property of a GN. Here, we introduce the “Flattened
Hamiltonian Graph Network,” or “FlatHGN”, which uses eq. (1) to construct a model that works on a
graph. We set up two Multi-Layer Perceptrons (MLPs), one for each node:

Hself : RL
v → R, (3)

and one for each edge:

Hpair : RL
v × RL

v → R. (4)

Note that the derivatives ofH now propagate through the pool, e.g.,

∂H(V )

∂vi
=
∂Hself(vi)

∂vi
+
∑
rk=i

∂Hpair(ek,vrk ,vsk)

∂vi
(5)

+
∑
sk=i

∂Hpair(ek,vrk ,vsk)

∂vi
.

This model is similar to the Lagrangian Graph Network proposed in [49]. Now, should this FlatHGN
learn energy functions such that we can successfully model the dynamics of the system with Hamil-
ton’s equations, we would expect that Hself and Hpair should be analytically similar to parts of the
true Hamiltonian. Since we have broken the traditional HGN into a FlatHGN, we now have pairwise
and self energies, rather than a single global energy, and these are simpler to extract and interpret.
This is a similar inductive bias to the GN we introduced previously. To train a FlatHGN, one can
follow our strategy above, with the output predictions made using Hamilton’s equations applied to
ourH. One difference is that we also regularizeHpair, since it is degenerate withHself in that it can
pick up self energy terms.

B Simulations

Our simulations for sections 4.1 and 4.2 were written using the JAX library (https://github.
com/google/jax) so that we could easily vectorize computations over the entire dataset of 10,000
simulations. Example “long exposures” for each simulation in 2D are shown in fig. 4. To create each
simulation, we set up the following potentials between two particles, 1 (receiving) and 2 (sending).
Here, r′12 is the distance between two particles plus 0.01 to prevent singularities. For particle i, mi

is the mass, qi is the charge, n is the number of particles in the simulation, ri is the position of a
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Figure 4: Examples of a selection of simulations, for 4 nodes and two dimensions. Decreasing
transparency shows increasing time, and size of points shows mass.

particle, and ṙi is the velocity of a particle.

1/r2 : U12 = −m1m2/r
′
12

1/r : U12 = m1m2 log
(
r′12

)
Spring : U12 = (r′12 − 1)2

Damped : U12 = (r′12 − 1)2 + r1 · ṙ1/n

Charge : U12 = q1q2/r
′
12

Dicontinuous : U12 =

{
0, r′12 < 2
(r′12 − 1)2, r′12 ≥ 2

All variables lack units. Here, mi is sampled from a log-normal distribution with µ = 0, σ = 1. Each
component of ri and ṙi is randomly sampled from a normal distribution with µ = 0, σ = 1. qi is
randomly drawn from a set of two elements: {−1, 1}, representing charge. The acceleration of a
given particle is then

r̈i = − 1

mi

∑
j

∇riUij . (6)

This is integrated over 1000 time steps of a fixed step size for a given random initial configuration
using an adaptive RK4 integrator. The step size varies for each simulation due to the differences
in scale. It is: 0.005 for 1/r, 0.001 for 1/r2, 0.01 for Spring, 0.02 for Damped, 0.001 for Charge,
and 0.01 for Discontinuous. Each simulation is performed in two and three dimensions, for 4 and 8
bodies. We store these simulations on disk. For training, the simulations for the particular problem
being studied are loaded, and each instantaneous snapshot of each simulation is converted to a fully
connected graph, with the predicted property (nodes of V ′, see appendix A) being the acceleration of
the particles at that snapshot.

The test loss of each model trained on each simulation set is given in table 3.

As described in the text (and visualized in the drive video), we can fit linear combinations of the true
force components to each of the significant features of a message vector. This fit is summarized by
table 1, and the fit itself is visualized in fig. 5 for various models on the 2D spring simulation.
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Sim. Standard Bottleneck L1 KL FlatHGN

Charge-2 49 50 52 60 55
Charge-3 1.2 0.99 0.94 4.2 3.5
Damped-2 0.30 0.33 0.30 1.5 0.35
Damped-3 0.41 0.45 0.40 3.3 0.47
Disc.-2 0.064 0.074 0.044 1.8 0.075
Disc.-3 0.20 0.18 0.13 4.2 0.14
r−1-2 0.077 0.069 0.079 3.5 0.05
r−1-3 0.051 0.050 0.055 3.5 0.017
r−2-2 1.6 1.6 1.2 9.3 1.3
r−2-3 4.0 3.6 3.4 9.8 2.5
Spring-2 0.047 0.046 0.045 1.7 0.016
Spring-3 0.11 0.11 0.090 3.8 0.010

Table 3: Test prediction losses for each model on each dataset in two and three dimensions. The
training was done with the same batch size, schedule, and number of epochs.

Figure 5: The most significant message components of each model compared with a linear combina-
tion of the force components: this example, the spring simulation in 2D with eight nodes for training.
These plots demonstrate that the GN’s messages have learned to be linear transformations of the
vector components of the true force, in this case a springlike force, after applying an inductive bias to
the messages.

C Symbolic Regression Details

After training a model on each simulation, we convert a deep learning model to a symbolic expression
by approximating subcomponents of the model with symbolic regression, over observed inputs and
outputs. For our aforementioned GNN implementation, we can record the outputs of φe and φv for
various data points in the training set.

For models other than the bottleneck and Hamiltonian model (where we explicitly limit the features)
we calculate the most significant output features of φe (we also refer to the output features as “message
components”). For the L1 and standard model, this is done by sorting the message components
with the largest standard deviation; the most significant feature is the one with the largest standard
deviation, which are the features we study. For the KL model, we consider the feature with the
largest KL-divergence: µ2 + σ2 − log

(
σ2
)
. These features are the ones we consider to be containing

information used by the GN, so are the ones we fit symbolic expressions to.

As an example, here we fit the most significant feature, which we refer to as φe1, over random examples
of the training dataset. We do this for the particle simulations in section 4.1. The inputs to the actual
φe1 neural network are: m1,m2, q1, q2, x1, x2, . . . (mass, charge, and Cartesian positions of receiving
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and sending node), leaving us with many examples of (m1,m2, q1, q2, x1, x2, . . . , φ
e
1). We would

like to fit a symbolic expression to map (m1,m2, q1, q2, x1, x2, . . .)→ φe1. To simplify things for this
symbolic model, we convert the input position variables to a more interpretable format: ∆x = x2−x1

for x displacement, likewise for y (and z, if it is a 3D simulation), and r =
√

∆x2 + ∆y2 (+∆z2)
for distance.

We then pass these (m1,m2, q1, q2,∆x,∆y, (∆z, )r, φ
e
1) examples (we take 5000 examples for each

of our tests) to eureqa, and ask it to fit φe1 as a function of the others by minimizing the mean
absolute error (MAE). We allow it to use the operators +,−,×, /,>,<, ^, exp, log, IF(·, ·, ·) as
well as real constants in its solutions. We score complexity by counting the number of occurrences
of each operator, constant, and input variable. We weight ^, exp, log, IF(·, ·, ·) as three times the
other operators, since these are more complex operations. eureqa outputs the best equation at
each complexity level, denoted by c. Example outputs are shown in table 4 for the 1/r and 1/r2

simulations. We select a formula from this list by taking the one that maximizes the fractional drop
in mean absolute error (MAE) over an increase in complexity from the next best model. This is
analogous to Occam’s Razor: we jointly optimize for simplicity and accuracy of the model. The
objective itself can be written as maximizing (−∆ log(MAEc)/∆c) over the best model at each
maximum complexity level, and is schematically illustrated in fig. 6. We find experimentally that this
score produces the best-recovered solutions in a variety of tests on different generating equations.

Following the process of fitting analytic equations to the messages, we fit a single analytic expression
to model φe1 as a function of the simplified input variables. We recover many analytical expressions
that were used to generate the data, examples of which are listed below (a, b indicate learned
constants):

• Spring, 2D, L1 (expect φe1 ≈ (a · (∆x,∆y))(r − 1) + b).

φe1 ≈ 1.36∆y + 0.60∆x− 0.60∆x+ 1.37∆y

r
− 0.0025

• 1/r2, 3D, Bottleneck (expect φe1 ≈ a·(∆x,∆y,∆z)
r3 + b).

φe1 ≈
0.021∆xm2 − 0.077∆ym2

r3

• Discontinuous, 2D, L1 (expect φe1 ≈ IF(r > 2, (a · (∆x,∆y,∆z))r, 0) + b).

φe1 ≈ IF(r > 2, 0.15r∆y + 0.19r∆x, 0)− 0.038

Examples of failed reconstructions. Note that reconstruction does not always succeed, especially
for training strategies other than L1 or bottleneck models that cannot successfully find compact
representations of the right dimensionality. We demonstrate some failed examples below:

• Spring, 3D, KL (expect φe1 ≈ (a · (∆x,∆y,∆z))(r − 1) + b).

φe1 ≈ 0.57∆y + 0.32∆z

• 1/r, 3D, Standard (expect φe1 ≈ a·(∆x,∆y,∆z)
r2 + b).

φe1 ≈
0.041 +m2IF(∆z > 0, 0.021, 0.067)

r

We do not attempt to make any general statements about when symbolic regression applied to the
message components will fail or succeed in extracting the true law. Simply, we show that it is possible,
for a variety of physical systems, and argue that reconstruction is more likely by the inclusion of a
strong inductive bias in the network.

A full table of successes and failures in reconstructing the force law over the different n-body
experiments is given in table 5. While the equations given throughout the paper were generated with
eureqa, to create this table in particular, we switched from eureqa to PySR. This is because PySR
allows us to configure a controlled experiment with fixed hyperparameters and total mutation steps for
each force law, whereas Eureqa makes these controls inaccessible. However, given enough training
time, we found eureqa and PySR produced equivalent results for equations at this simplicity level.
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Solutions extracted for the 2D 1/r2 Simulation MAE Complexity

φe1 = 0.162 + (5.62 + 20.3m2∆x− 153m2∆y)/r3 17.954713 22
φe1 = (6.07 + 19.9m2∆x− 154m2∆y)/r3 18.400224 20
φe1 = (3.61 + 20.9∆x− 154m2∆y)/r3 42.323236 18
φe1 = (31.6∆x− 152m2∆y)/r3 69.447467 16
φe1 = (2.78− 152m2∆y)/r3 131.42547 14
φe1 = −142m2∆y/r3 160.31243 12
φe1 = −184∆y/r2 913.83751 8
φe1 = −7.32∆y/r 1520.9493 6
φe1 = −0.282m2∆y 1551.3437 5
φe1 = −0.474∆y 1558.9756 3
φe1 = 0.0148 1570.0905 1

Solutions extracted for the 2D 1/r Simulation MAE Complexity

φe1 = (4.53m2∆y − 1.53∆x− 15.0m2∆x)/r2 − 0.209 0.37839388 22
φe1 = (4.58m2∆y −∆x− 15.2m2∆x)/r2 − 0.227 0.38 20
φe1 = (4.55m2∆y − 15.5m2∆x)/r2 − 0.238 0.42 18
φe1 = (4.59m2∆y − 15.5m2∆x)/r2 0.46575519 16
φe1 = (10.7∆y − 15.5m2∆x)/r2 2.48 14
φe1 = (∆y − 15.6m2∆x)/r2 6.96 12
φe1 = −15.6m2∆x/r2 7.93 10
φe1 = −34.8∆x/r2 31.17 8
φe1 = −8.71∆x/r 68.345174 6
φe1 = −0.360m2∆x 85.743106 5
φe1 = −0.632∆x 93.052677 3
φe1 = −∆x 96.708906 2
φe1 = −0.303 103.29053 1

Table 4: Results of using symbolic regression to fit equations to the most significant (see text) feature
of φe, denoted φe1, for the 1/r2 (top) and 1/r (bottom) force laws, extracted from the bottleneck
model. We expect to see φe1 ≈ a·(∆x,∆y,∆z)

rα + b, for arbitrary a and b, and α = 2 for the 1/r

simulation and α = 3 for the 1/r2 simulation, which is approximately what we recover. The row
with a gray background has the largest fractional drop in mean absolute error in their tables, which
according to our parametrization of Occam’s razor, represents the best model. This demonstrates a
technique for learning an unknown “force law” with a constrained graph neural network.

Pure eureqa experiment To demonstrate that eureqa by itself is not capable of finding many of
the equations considered from the raw high-dimensional dataset, we ran it on the simulation data
without our GN’s factorization of the problem, giving it the features of every particle. As expected,
even after convergence, it cannot find meaningful equations; all of the solutions it provides for the
n-body system are very poor fits. One such example of an equation, for the acceleration of particle 2
along the x direction in a 6-body system under a 1/r2 force law, is:

ẍ2 =
0.426

367y4 − 1470
+

2.88× 105x1

2.08× 103y4 + 446y2
4

− 5.98× 10−5x6 − 109x1,

where the indices refer to particle number. Despite eureqa converging, this equation is evidently
meaningless and achieves a poor fit to the data. Thus, we argue that raw symbolic regression is
intractable for the problems we consider, and only after factorization with a neural network do these
problems become feasible for symbolic regression.

Discovering potentials using FlatHGN. Lastly, we also show an example of a successful recon-
struction of a pairwise Hamiltonian from data. We treat the Hpair just as we would φe1, and fit it to
data. The one difference here is that there are potentialHpair values offset by a constant function of
the non-dynamical parameters (fixed properties like mass) which still produce the correct dynamics,
since only the derivatives ofHpair are used. Thus, we cannot simply fit a linear transformation of the
trueHpair to data to verify it has learned our generating equation: we must rely on symbolic regression
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Figure 6: A plot of the data for the 1/r simulation in table 4, indicating mean absolute error versus
complexity in the top plot and fractional drop in mean absolute error over the next-best model in the
bottom plot. As indicated, we take the largest drop in log-loss over a single increase in complexity as
the chosen model—it is our parametrization of Occam’s Razor.

Sim. Standard Bottleneck L1 KL

Charge-2 7 3 7 7
Charge-3 7 3 7 7
r−1-2 7 3 3 3
r−1-3 7 3 3 3
r−2-2 7 3 3 7
r−2-3 7 3 3 7
Spring-2 7 3 3 3
Spring-3 7 3 3 3

Table 5: Success/failure of a reconstruction of the force law by symbolic regression, corresponding to
the values in table 1.

to extract the full functional form. We follow the same procedure as before, and successfully extract
the potential for a charge simulation:

Hpair ≈
0.0019q1q2

r
− 0.0112− 0.00143q1 − 0.00112q1q2,

where we expectHpair ≈ a q1q2r + f(q1, q2,m1,m2), for constant a and arbitrary function f , which
shows that the neural network has learned the correct form of the Hamiltonian.
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Hyperparameters. Since the hyperparameters used internally by eureqa are opaque and not tun-
able, here we discuss the parameters used in PySR [27], which are common among many symbolic
regression tools. At a given step of the training, there is a set of active equations in the “population”.
The number of active equations is a tunable hyperparameter, and is related to the diversity of the
discovered equations, as well as the number of compute cores being used. The max size of equations
controls the maximum complexity considered, and can be controlled to prevent the algorithm from
wasting cycles on over-complicated equations. The operators used in the equations depends on the
specific problem considered, and is another hyperparameter specified by the user. Next, there is a set
of tunable probabilities associated with each mutation: how frequently to mutate an operator into
a different operator, add an operator with arguments, replace an operator and its arguments with a
constant, and so on. In some approaches such as with PySR, the best equations found over the course
of training are randomly reintroduced back into the population. The frequency at which this occurs is
controlled by another hyperparameter.

D Video Demonstration and Code

We include a video demonstration of the central ideas of our paper at https://github.com/
MilesCranmer/symbolic_deep_learning. It shows the message components of a graph network
converging to be equal to a linear combination of the force components when L1 regularization is
applied. Time in each clip of the video is correlated with training epoch. In this video, the top left
corner of the fully revealed plot corresponds to a single test simulation that is 300 time steps long.
Four particles of different masses are initiated with random positions and velocities, and evolved
according to the potential of a spring with an equilibrium position of 1: (r − 1)2, where r is the
distance between two particles. The evaluation trajectories are shown on the right, with the gray
particles indicating the true locations. The 15 largest message components in terms of standard
deviation over a test set are represented in a sorted list below the graph network in gray, where
darker color corresponds to a larger standard deviation. Since we apply L1 regularization to the
messages, we expect this list to grow sparser over time, which it does. Of these messages, the two
largest components are extracted, and each is fit to a separate linear combination of the true force
components (bottom left). A better fit to the true force components — indicating that the messages
represent the force — are indicated by dots (each dot is a single message) that lie closer along the
y = x line in the bottom middle two scatter plots.

As can be seen in the video, as the messages grow increasingly sparse, the messages eventually
converge to be almost exactly linear combinations of the true forces. Finally, once the loss is
converged, we also fit symbolic regression to the largest message component. The video was created
using the same training procedure as used in the rest of the paper. The dataset that the L1 model was
trained on is the 4-node Spring-2. Finally, we include the full code required to generate the animated
clips in the above figure. This code contains all of the models and simulators used in the paper, along
with the default training parameters. This code can also be accessed in the drive.

E Cosmological Experiments

For the cosmological data graph network, we do a coarse hyperparameter tuning based on predictions
of δi and select a GN with 500 hidden units, two hidden layers per node function and message
function. We choose 100 message dimensions as before. We keep other hyperparameters the same as
before: L1 regularization with a regularization scale of 10−2.

Remarkably, the vector space discovered by this graph network is 1 dimensional. This is indicated
by the fact that only one message component has standard deviation of about 10−2 and all other 99
components have a standard deviation of under 10−8. This suggests that the δi prediction is a sum
over some function of the center halo and each neighboring halo. Thus, we can rewrite our model as
a sum over a function φe1 which takes the central halo and each neighboring halo, and passes it to φv
which predicts δi given the central halo properties.

Best-fit parameters. We list best-fit parameters for the discovered models in the paper in table 6.
The functional forms were extracted from the GN by approximating both φe1 and φv over training data
with a symbolic regression and then analytically composing the expressions. Although the symbolic
regression fits constants itself, this accumulates error from the two levels of approximation (graph net
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Test Formula Summed Component
〈
|δi−δ̂i|

〉

O
ld Constant δ̂i = C1 N/A 0.421

Simple δ̂i = C1 + (C2 +MiC3)ei ei =
∑|ri−rj|<20

j 6=i Mj 0.121
N

ew

Best, without mass δ̂i = C1 + ei
C2+C3ei|vi| ei =

∑
j 6=i

C4+|vi−vj|
C5+(C6|ri−rj|)C7

0.120

Best, with mass δ̂i = C1 + ei
C2+C3Mi

ei =
∑
j 6=i

C4+Mj

C5+(C6|ri−rj|)C7
0.0882

Test Best-fit Parameters

Simple C1 = 0.415
Traditional C1 = −0.0376, C2 = 0.0529, C3 = 0.000927

Best, without mass C1 = −0.199, C2 = 1.31, C3 = 0.027,
C4 = 1.54, C5 = 50.165, C6 = 18.94, C7 = 13.21

Best, with mass C1 = −0.156, C2 = 3.80, C3 = 0.0809,
C4 = 0.438, C5 = 7.06, C6 = 15.5, C7 = 20.3

Best, with mass and cutoff∗ C1 = −0.149, C2 = 3.77, C3 = 0.0789,
C4 = 0.442, C5 = 7.09, C6 = 15.5, C7 = 21.3

Table 6: Best-fit parameters for the functional forms used to estimate the overdensity of dark matter
halos. The functional forms are given in the upper table for reference. ∗Here we use the same formula
as “Best, with mass,” since we found an equivalent formula by only looking at the 80% chunk of the
data. The constants in that functional form are also fit by only training on that fraction of the data.

to data, symbolic regression to graph net). Thus, we take out the functional forms as given in table 6,
and refit the parameters directly to the training data. This results in the parameters given, which are
used to calculate accuracy of the symbolic models.
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